【題目】某美術學院2018年在山西招生,報名人數(shù)很多.工作人員在某個市區(qū)抽取了該區(qū)2018年美術招生考試成績中200名學生的色彩和素描的初試成績,按成績分組,得到的頻率分布表如下圖所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 24 | 0.12 | |
第2組 | ① | 0.18 | |
第3組 | 64 | 0.32 | |
第4組 | 60 | ② | |
第5組 | 16 | 0.08 | |
合計 | 200 | 1.00 |
(1)請先求出頻率分布表中①、②位置相應數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖,并由頻率分布直方圖估算中位數(shù);
(2)為了能更清楚地了解該市學生的情況,該美院決定在復試以前先進行抽樣調研.但受場地和教授人數(shù)的客觀限制,決定從第3組選出3人,第4組選出2人,第5組選出1人,然后從這6人中再選出2人進行調研,求這2人均來自第三組的概率.
【答案】(1)①處填36,②處填0.30,作圖見解析,中位數(shù)為173.125(2)
【解析】
(1)由各個區(qū)間的數(shù)據(jù)和為總數(shù)分別求出①和②處的數(shù)據(jù),根據(jù)頻率和組距畫出頻率分布直方圖,利用中位數(shù)左邊和右邊的直方圖面積相等即可求得中位數(shù);
(2)列舉人中隨機抽取人的總的基本事件數(shù),再列舉出這人均來自第三組的基本事件數(shù),利用古典概型公式即可求得結果.
(1)由題意,①處的數(shù)據(jù)為,
②處的數(shù)據(jù)為,
①處填,②處填;
頻率分布直方圖如下,
由圖知,前兩個組的頻率和為,前三個組的頻率和為.
∴中位數(shù)在第組中,設為,
則,解得,
∴中位數(shù)為;
(2)在選出的人中,第組的人記為、、,第組的人記為、,第組的人記為.
則抽取人所有可能結果為,,,,,,,,
,,,,,,,共種,
設選出的人均來自第組,
事件的所有可能結果為,,共種,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).其中.
(1)討論函數(shù)的單調性;
(2)函數(shù)在處存在極值-1,且時,恒成立,求實數(shù)的最大整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術》中的“蒲莞生長”是一道名題根據(jù)該問題我們改編一題:今有蒲草第一天長為三尺,莞草第一天長為一尺,以后蒲草的生長長度遂天減半,莞草的生長長度逐天加倍,現(xiàn)問幾天后莞草的長度是蒲草的長度的兩倍,以下給出了問題的四個解,其精確度最高的是(結果保留一位小數(shù),參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)( )
A.2.6日B.3.0日C.3.6日D.4.0日
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶在魚成熟時,隨機從網(wǎng)箱中捕撈100尾魚,其質量分別在[4,4.5),[4.5.5),[5.5.5),[5.5,6),[6,6.5),[6.5,7](單位:斤)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示
(1)現(xiàn)按分層抽樣的方法,從質量為[4.5,5),[5,5.5)的魚中隨機抽取5尾,再從這5尾中隨機抽取2尾,記隨機變量X表示質量在[4.5,5)內的魚的尾數(shù),求X的分布列及數(shù)學期望.
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,該養(yǎng)殖戶還未捕撈的魚大約還有1000尾,現(xiàn)有兩個方案:
方案一:所有剩余的魚現(xiàn)在賣出,質量低于5.5斤的魚售價為每斤10元,質量高于5.5斤的魚售價為每斤12元
方案二:一周后所有剩余的魚逢節(jié)日賣出,假設每尾魚的質量不變,魚的數(shù)目不變,質量低于5.5斤的魚售價為每斤15元,這類魚養(yǎng)殖一周的費用是平均每尾22元;質量高于5.5斤的魚售價為每斤16元,這類魚養(yǎng)殖一周的費用是平均每尾24元通過計算確定水產(chǎn)養(yǎng)殖戶選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m,n是兩條不同的直線,α,β是兩個不同的平面,給出下列命題:
①若m∥n,n⊥β,mα,則α⊥β;
②若α⊥β,α∩β=m,n⊥m,則n⊥α或n⊥β;
③若m⊥α,m⊥n,nβ,則α∥β或α⊥β;
④若α∩β=m,n∥m,nα,nβ,則n∥α且n∥β;
其中正確命題的序號是( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間上是單調遞增,若,則的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣1,1)上的奇函數(shù),且f(),
(1)確定函數(shù)的解析式;
(2)用定義法判斷函數(shù)的單調性;
(3)解不等式;f(t﹣1)+f(t)<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com