【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率為.
(1)求橢圓的方程;
(2)過(guò)動(dòng)點(diǎn)的直線交軸于點(diǎn),交橢圓于點(diǎn),(在第一象限),且是線段的中點(diǎn).過(guò)點(diǎn)作軸的垂線交橢圓于另一點(diǎn),延長(zhǎng)交橢圓于點(diǎn).
①設(shè)直線、的斜率分別為,證明為定值;
②求直線斜率取最小值時(shí),直線的方程.
【答案】(1)(2)①詳見(jiàn)解析②
【解析】
(1) 利用長(zhǎng)軸長(zhǎng)為,離心率為分別求出的值,再求出的值,即可求出橢圓方程;(2) ① 設(shè)出的坐標(biāo),表示出直線的斜率,作比即可;②設(shè)出的坐標(biāo),分別求出的方程,聯(lián)立方程組,求出直線的斜率的解析式,根據(jù)不等式的性質(zhì)計(jì)算出的最小值,再求出的值即可.
(1)由題意得:,
所以,,
故橢圓方程為.
(2)①設(shè),(,),由,可得,
所以直線的斜率,直線的斜率
此時(shí),所以為定值.
②設(shè),,直線的方程為,直線的方程為.
聯(lián)立,整理得,
由,可得,
同理,.
所以,,
,
所以,
由,,可知,所以,當(dāng)且僅當(dāng)時(shí)取得等號(hào).
由,,在橢圓:上得,
此時(shí),即,
由得,,所以時(shí),符合題意.
所以直線的斜率最小時(shí),直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí), 恒成立,求的范圍;
(2)若在處的切線為,求的值.并證明當(dāng))時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,過(guò)且與軸垂直的直線與橢圓在第一象限內(nèi)的交點(diǎn)為,且.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(1)設(shè)甲同學(xué)上學(xué)期間的三天中之前到校的天數(shù)為,求,,,時(shí)的概率,,,;
(2)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在之前到校的天數(shù)比乙同學(xué)在之前到校的天數(shù)恰好多”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=2,直線.l:y=kx-2.
(1)若直線l與圓O相切,求k的值;
(2)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)∠AOB為銳角時(shí),求k的取值范圍;
(3)若,P是直線l上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線PC,PD,切點(diǎn)為C,D,探究:直線CD是否過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,且相鄰的兩個(gè)最值點(diǎn)的距離為.
(1)求函數(shù)的解析式;
(2)若將函數(shù)的圖象向左平移1個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,關(guān)于的不等式在上有解,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com