【題目】小波以游戲方式?jīng)Q定是參加學校合唱團還是參加學校排球隊,游戲規(guī)則為:以0為起點,再從A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8(如圖)這8個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X.若X=0就參加學校合唱團,否則就參加學校排球隊.

(1)求小波參加學校合唱團的概率;
(2)求X的分布列和數(shù)學期望.

【答案】
(1)解:從8個點中任意取兩個點為向量的終點的不同取法有 =28種

X=0時,兩向量夾角為直角共有8種情形

所以小波參加學校合唱團的概率P(X=0)= =


(2)解:兩向量數(shù)量積的所有可能情形有﹣2,﹣1,0,1

X=﹣2時有2種情形

X=1時有8種情形

X=﹣1時,有10種情形

X的分布列為:

X

﹣2

﹣1

0

1

P

EX= =


【解析】(1)先求出從8個點中任意取兩個點為向量的終點的不同取法,而X=0時,即兩向量夾角為直角,求出結(jié)果數(shù),代入古典概率的求解公式可求(2)先求出兩向量數(shù)量積的所有可能情形及相應(yīng)的概率,即可求解分布列及期望值
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關(guān)知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45/m,新墻的造價為180/m,設(shè)利用的舊墻的長度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(1+x)e2x , g(x)=ax+ +1+2xcosx,當x∈[0,1]時,
(1)求證: ;
(2)若f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線l1 , l2之間,l∥l1 , l與半圓相交于F,G兩點,與三角形ABC兩邊相交于E,D兩點.設(shè)弧 的長為x(0<x<π),y=EB+BC+CD,若l從l1平行移動到l2 , 則函數(shù)y=f(x)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

(1)時,求不等式的解集;

(2) |的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)設(shè)直線l過點(2,3)且與直線2x+y+1=0垂直,lx軸,y軸分別交于AB兩點,求|AB|;

2)求過點A4,-1)且在x軸和y軸上的截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,是棱的中點.

(1)證明:平面;

(2)若是棱的中點,求三棱錐的體積與三棱柱的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( )
A.(0,1)
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為 ,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案