設(shè)等差數(shù)列{an}滿足a2=9,且a1,a5是方程x2-16x+60=0的兩根.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,即可求{an}的通項(xiàng)公式;
(2)根據(jù)等差數(shù)列的通項(xiàng)公式,通過(guò)分類討論即可得到數(shù)列{|an|}的前n項(xiàng)和Tn
解答: 解:(1)∵a2=9,且a1,a5是方程x2-16x+60=0的兩根,
∴a1+a5=2a3=16,解得d=-1,
故an=-n+11.
(2)數(shù)列{an}的前n項(xiàng)和為Sn,由題意得當(dāng)n≤11,|an|=-n+11,
當(dāng)n≥12,|an|=n-11,
故當(dāng)n≤11時(shí),Tn=Sn=-
1
2
n2+
21
2
n

當(dāng)n≥12時(shí),Tn=-Sn+2S11=
1
2
n2-
21
2
n+110

綜上所述,Tn=
-
1
2
n2+
21
2
n,n≤11
1
2
n2-
21
2
n+110,n≥12.
點(diǎn)評(píng):本題主要考查等差數(shù)列的應(yīng)用,以及數(shù)列求和,主要要進(jìn)行分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3,-2),
b
=(x,y-1)且
a
b
,若x,y均為正數(shù),則
3
x
+
2
y
的最小值是(  )
A、
5
3
B、
8
3
C、8
D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的內(nèi)角A,B,C所對(duì)的邊a,b,c滿足(a+b)2-c2=4,且C=60°,則△ABC的面積為( 。
A、
3
3
B、
1
3
C、
3
6
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足
x≥0
y≥0
ax-2y-2(a-2)≥0
2x+a2y-2(a2+2)≤0
,當(dāng)a∈(0,2)時(shí),x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a是一個(gè)自然數(shù),f(a)是a的各位數(shù)字的平方和,定義數(shù)列{an}:a1是自然數(shù),an=f(an-1)(n∈N*,n≥2).
(Ⅰ)求f(99),f(2014);
(Ⅱ)若a1≥100,求證:a1>a2
(Ⅲ)求證:存在m∈N*,使得am<100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},a1=1,前n項(xiàng)和Sn滿足nSn+1-(n+3)Sn=0,
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若bn=4(
an
n
2,求數(shù)列{(-1)nbn}的前n項(xiàng)和Tn;
(Ⅲ)設(shè)Cn=2n
n
an
-λ),若數(shù)列{Cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一艘輪船在航行中的燃料費(fèi)Q(元)和它的速度x(公里/小時(shí))的立方成正比,已知在速度為每小時(shí)10公里時(shí),燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元.
(1)求此輪船在航行中的燃料費(fèi)Q關(guān)于它的速度x的函數(shù)關(guān)系式;
(2)問(wèn)輪船以多大速度航行時(shí),能使行駛每公里的費(fèi)用總和y最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)定義域?yàn)镮,存在非零常數(shù)T,對(duì)于任意的x∈I,都有f(x+T)=-f(x),則f(x)是周期函數(shù)嗎?若都有f(x+T)=
1
f(x)
,則f(x)是周期函數(shù)嗎?若都有f(x+T)=-
1
f(x)
,則f(x)是周期函數(shù)嗎?請(qǐng)給出詳細(xì)的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(1+i)2的虛部是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案