【題目】如圖1,直線將矩形分為兩個(gè)直角梯形和,將梯形沿邊翻折,如圖2,在翻折過(guò)程中(平面和平面不重合),下列說(shuō)法正確的是( )
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.存在某一位置,使得
D.在翻折過(guò)程中,恒有直線平面
【答案】D
【解析】
根據(jù)線線、線面、面面有關(guān)定理,對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).
對(duì)于A選項(xiàng),假設(shè)存在某一位置,使得平面,由于平面平面,根據(jù)線面平行的性質(zhì)定理有,由圖可知這與四邊形是直角梯形矛盾,故A選項(xiàng)錯(cuò)誤.
對(duì)于B選項(xiàng),假設(shè)存在某一位置,使得平面,則,由圖可知這與四邊形是直角梯形矛盾,故B選項(xiàng)錯(cuò)誤.
對(duì)于C選項(xiàng),根據(jù)異面直線的知識(shí)可知,與是異面直線,故C選項(xiàng)錯(cuò)誤.
對(duì)于D選項(xiàng),由于,所以平面平面,所以在翻折過(guò)程中,恒有直線平面.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,點(diǎn)E是棱PB的中點(diǎn).
(1)求異面直線EC與PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A,B,C,D是直角坐標(biāo)系中不同的四點(diǎn),若,,且,則下列說(shuō)法正確的是( ),
A.C可能是線段AB的中點(diǎn)
B.D可能是線段AB的中點(diǎn)
C.C、D可能同時(shí)在線段AB上
D.C、D不可能同時(shí)在線段AB的延長(zhǎng)線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)、,
(1)若兩點(diǎn)到直線的距離都為,求直線的方程;
(2)若兩點(diǎn)到直線的距離都為,試根據(jù)的取值討論直線存在的條數(shù),不需寫出直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn),且面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)直線斜率為,且與橢圓的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月,甲乙兩校的學(xué)生參加了某考試機(jī)構(gòu)舉行的大聯(lián)考,現(xiàn)對(duì)這兩校參加考試的學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)統(tǒng)計(jì)顯示,考生的數(shù)學(xué)成績(jī)服從正態(tài)分布,從甲乙兩校100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:
(1)試通過(guò)莖葉圖比較這40份試卷的兩校學(xué)生數(shù)學(xué)成績(jī)的中位數(shù);
(2)若把數(shù)學(xué)成績(jī)不低于135分的記作數(shù)學(xué)成績(jī)優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有的把握認(rèn)為數(shù)學(xué)成績(jī)?cè)?00分及以上的學(xué)生中數(shù)學(xué)成績(jī)是否優(yōu)秀與所在學(xué)校有關(guān)?
(3)從所有參加此次聯(lián)考的學(xué)生中(人數(shù)很多)任意抽取3人,記數(shù)學(xué)成績(jī)?cè)?34分以上的人數(shù)為,求的數(shù)學(xué)期望.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
參考公式與臨界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號(hào)大于第一輛車的車序號(hào),就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號(hào)”車的概率分別為P1,P2,則( )
A. P1P2= B. P1=P2= C. P1+P2= D. P1<P2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某幼兒園舉辦“yue”主題系列活動(dòng)——“悅”動(dòng)越健康親子運(yùn)動(dòng)打卡活動(dòng),為了解小朋友堅(jiān)持打卡的情況,對(duì)該幼兒園所有小朋友進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
打卡天數(shù) | 17 | 18 | 19 | 20 | 21 |
男生人數(shù) | 3 | 5 | 3 | 7 | 2 |
女生人數(shù) | 3 | 5 | 5 | 7 | 3 |
(1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);
(2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線:的左、右焦點(diǎn)分別是、,左、右兩頂點(diǎn)分別是、,弦AB和CD所在直線分別平行于x軸與y軸,線段BA的延長(zhǎng)線與線段CD相交于點(diǎn)如圖).
⑴若是的一條漸近線的一個(gè)方向向量,試求的兩漸近線的夾角;
⑵若,,,,試求雙曲線的方程;
⑶在⑴的條件下,且,點(diǎn)C與雙曲線的頂點(diǎn)不重合,直線和直線與直線l:分別相交于點(diǎn)M和N,試問(wèn):以線段MN為直徑的圓是否恒經(jīng)過(guò)定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo);若不是,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com