【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCDAD1,PAAB ,點(diǎn)E是棱PB的中點(diǎn).

1)求異面直線ECPD所成角的余弦值;

2)求二面角B-EC-D的余弦值.

【答案】1.2.

【解析】

1)先根據(jù)題意建立空間直角坐標(biāo)系,分別求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.

2)分別求得平面BEC的一個(gè)法向量和平面DEC的一個(gè)法向量,再利用面面角向量方法求解,注意根據(jù)圖形判斷二面角與向量夾角的大小關(guān)系確定符號(hào).

1)因?yàn)?/span>PA⊥底面ABCD,且底面ABCD為矩形,

所以AB,ADAP兩兩垂直,

A為原點(diǎn),AB,AD,AP分別為xy,z軸建立空間直角坐標(biāo)系.

又因?yàn)?/span>PAAB AD1,

所以A(0,0,0)B ,C,D(0,10)P

因?yàn)?/span>E是棱PB的中點(diǎn),所以E,

所以,(0,1,- )

所以cos,〉=,

所以異面直線ECPD所成角的余弦值為.

2)由(1)得(0,1,0)(,00)

設(shè)平面BEC的法向量為(x1y1,z1)

所以

x11,則z11,所以平面BEC的一個(gè)法向量為(10,1)

設(shè)平面DEC的法向量為(x2y2,z2)

所以

z2,則y21,所以平面DEC的一個(gè)法向量為(01,)

所以cos,〉=

.由圖可知二面角B-EC-D為鈍角,所以二面角B-EC-D的余弦值為-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是函數(shù),,)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將)的圖像上所有的點(diǎn)( )

A. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

B. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

C. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

D. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個(gè)江水養(yǎng)殖場,有兩個(gè)方案:方案l:在岸邊上取兩點(diǎn),用長度為的圍網(wǎng)依托岸邊線圍成三角形兩邊為圍網(wǎng));方案2:在岸邊,上分別取點(diǎn),用長度為的圍網(wǎng)依托岸邊圍成三角形.請(qǐng)分別計(jì)算,面積的最大值,并比較哪個(gè)方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,側(cè)面底面,為線段上一點(diǎn),且滿足.

(1)若的中點(diǎn),求證:;

(2)當(dāng)最小時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,得到地區(qū)用戶滿意度評(píng)分的頻率分布直方圖和地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表.

地區(qū)用戶滿意度評(píng)分的頻率分布直方圖

地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表

滿意度評(píng)分分組

頻數(shù)

2

8

14

10

6

1)在圖中作出地區(qū)用戶滿意度評(píng)分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可).

地區(qū)用戶滿意度評(píng)分的頻率分布直方圖

2)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度分為三個(gè)等級(jí):

td style="width:88.95pt; border-left-style:solid; border-left-width:0.75pt; border-bottom-style:solid; border-bottom-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

不低于90

滿意度評(píng)分

低于70

70分到89

滿意度等級(jí)

不滿意

滿意

非常滿意

公司負(fù)責(zé)人為了解用戶滿意度情況,從地區(qū)中調(diào)查8戶,其中有2戶滿意度等級(jí)是不滿意,求從這8戶中隨機(jī)抽取2戶檢查,抽到不滿意用戶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為1,的中點(diǎn),在側(cè)面上,有下列四個(gè)命題:

①若,則面積的最小值為;

②平面內(nèi)存在與平行的直線;

③過作平面,使得棱,在平面的正投影的長度相等,則這樣的平面有4個(gè);

④過作面與面平行,則正方體在面的正投影面積為

則上述四個(gè)命題中,真命題的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

為回饋顧客,某商場擬通過摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求

顧客所獲的獎(jiǎng)勵(lì)額為60元的概率

顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

2)商場對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤,且每次移動(dòng)后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個(gè)圓盤從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線將矩形分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折過程中(平面和平面不重合),下列說法正確的是(

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.存在某一位置,使得

D.在翻折過程中,恒有直線平面

查看答案和解析>>

同步練習(xí)冊答案