【題目】已知兩個無窮數(shù)列分別滿足,,
其中,設數(shù)列的前項和分別為,
(1)若數(shù)列都為遞增數(shù)列,求數(shù)列的通項公式;
(2)若數(shù)列滿足:存在唯一的正整數(shù)(),使得,稱數(shù)列為“墜點數(shù)列”
①若數(shù)列為“5墜點數(shù)列”,求;
②若數(shù)列為“墜點數(shù)列”,數(shù)列為“墜點數(shù)列”,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.
【答案】(1),(2)①②
【解析】
(1)∵數(shù)列都為遞增數(shù)列,
∴由遞推式可得,,
則數(shù)列為等差數(shù)列,數(shù)列從第二項起構成等比數(shù)列.
∴;
(2)①∵數(shù)列滿足:存在唯一的正整數(shù)k=5,使得,且,
∴數(shù)列必為1,3,5,7,5,7,9,11,…,即前4項為首項為1,公差為2的等差數(shù)列,從第5項開始為首項5,公差為2的等差數(shù)列,
故;
②∵,即,∴,而數(shù)列為“墜點數(shù)列”且,數(shù)列中有且只有兩個負項.假設存在正整數(shù),使得,顯然,且
ⅰ.當時,,
當時,,故不存在,使得成立.
ⅱ.當時,,顯然不存在,使得成立.
ⅲ.當時,,當時,才存在,使得成立.所以.當時,,構造為1,3,1,3,5,7,9,…,為-1,2,4,8,-16,32,…,此時,所以的最大值為6.
科目:高中數(shù)學 來源: 題型:
【題目】已知為定義在實數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實根、(),稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知為給定實數(shù),求的表達式;
(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調性,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標原點到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點,若直線過點且與橢圓相交于兩點,試判斷是否存在直線,使以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在區(qū)間的函數(shù),定義:(),(),其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.
(1)若,,試寫出、的表達式;
(2)設且,函數(shù),,如果與恰好為同一函數(shù),求的取值范圍.
(3)若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”,已知函數(shù),,試判斷是否為上的“階收縮函數(shù)”,如果是,求出對應的,如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到100萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵方案:①獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加;②獎金不超過9萬元;③獎金不超過投資收益的20%.
(1)若建立函數(shù)模型制定獎勵方案,試用數(shù)學語言表述該公司對獎勵函數(shù)模型的基本要求,并分析函數(shù) 是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)作為獎勵函數(shù)模型,試確定最小的正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內,洗衣機銷量約占,電視機銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結論中一定正確的是( )
A. 電視機銷量最大的是第4季度
B. 電冰箱銷量最小的是第4季度
C. 電視機的全年銷量最大
D. 電冰箱的全年銷量最大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com