【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機銷量約占,電視機銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 電視機銷量最大的是第4季度

B. 電冰箱銷量最小的是第4季度

C. 電視機的全年銷量最大

D. 電冰箱的全年銷量最大

【答案】C

【解析】

根據(jù)商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖,逐項判定,即可得到答案.

由題意,某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖,

可知:A中,第4季度中電視機銷量所占的百分比最大,但銷量不一定最大,所以不正確;

B中,第4季度中電冰箱銷量所占的百分比最小,但銷量不一定最少,所以不正確;

由圖可知,全年中電視機銷售中所占的百分比最多,所以全年中電視機銷售最多,所以C正確;D不正確,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,底面是直角三角形,,為側(cè)棱的中點.

(1)求異面直線、所成角的余弦值;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個無窮數(shù)列分別滿足,,

其中,設(shè)數(shù)列的前項和分別為,

1)若數(shù)列都為遞增數(shù)列,求數(shù)列的通項公式;

2)若數(shù)列滿足:存在唯一的正整數(shù)),使得,稱數(shù)列墜點數(shù)列

若數(shù)列“5墜點數(shù)列,求

若數(shù)列墜點數(shù)列,數(shù)列墜點數(shù)列,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中為自然對數(shù)的底數(shù),…).

(1)當(dāng)時,求函數(shù)的極值;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

(3)若,當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域為,函數(shù).

1)若時,的解集為,求;

2)若存在使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為1的正三角形,點P所在的平面內(nèi),且a為常數(shù)),下列結(jié)論中正確的是( )

A.當(dāng)時,滿足條件的點P有且只有一個

B.當(dāng)時,滿足條件的點P有三個

C.當(dāng)時,滿足條件的點P有無數(shù)個

D.當(dāng)a為任意正實數(shù)時,滿足條件的點總是有限個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中

1)若,令函數(shù),解不等式

2)若,,求的值域;

3)設(shè)函數(shù),若對于任意大于等于2的實數(shù),總存在唯一的小于2的實數(shù),使得成立,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為正整數(shù)且,將等式記為式.

(1)求函數(shù),的值域;

(2)試判斷當(dāng)時(或2時),是否存在(或,,)使式成立,若存在,寫出對應(yīng)(或,,),若不存在,說明理由;

(3)求所有能使式成立的)所組成的有序?qū)崝?shù)對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中,已知,

1)求:凸多面體的體積;

2)若為線段的中點,求點到平面的距離;

3)若點、分別在棱、上滑動,且線段的長恒等于,線段的中點為

①試證:點必落在過線段的中點且平行于底面的平面上;

②試求點的軌跡.

查看答案和解析>>

同步練習(xí)冊答案