【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.

Ⅰ)求拋物線的方程;

Ⅱ)過點的兩條直線分別交拋物線于點、,線段的中點分別為、.如果直線的斜率之積等于1,求證:直線經(jīng)過一定點.

【答案】(Ⅰ);(Ⅱ)證明見解析.

【解析】分析:(Ⅰ)由題意可設(shè)直線的方程為與拋物線方程聯(lián)立可得,由弦長公式可得,拋物線的方程為.

Ⅱ)設(shè)直線的斜率為,則直線的斜率為.則直線的方程為與拋物線方程聯(lián)立可得,據(jù)此可得,同理可得:,直線的方程為,即,直線經(jīng)過定點.

詳解:(Ⅰ)由題意可設(shè)直線的方程為,令,.

聯(lián)立,,

根據(jù)拋物線的定義得,又,又,,.

則此拋物線的方程為.

Ⅱ)設(shè)直線的斜率為,則直線的斜率為.

于是直線的方程為,即,

聯(lián)立,,

同理將換成得:,

.

則直線的方程為,

,顯然當(dāng),.

所以直線經(jīng)過定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體中,平面平面,都是邊長為2的等邊三角形,,點在平面上的射影在的平分線上,已知和平面所成角為.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 相交于點,點在線段上,,且平面

(1)求實數(shù)的值;

(2)若,, 求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,恒成立,求實數(shù)的取值范圍;

(2)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.

(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;

(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數(shù)的底數(shù))求x1x2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)。

I)若曲線在點(,0)處的切線為x軸,求a的值;

II)求函數(shù)[0,l]上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若處取得極值,求處的切線方程;

(2)討論的單調(diào)性;

(3)若函數(shù)上無零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.

根據(jù)該折線圖,下列結(jié)論錯誤的是(  )

A. 月接待游客量逐月增加

B. 年接待游客量逐年增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習(xí)冊答案