【題目】在四棱錐中,底面為正方形,.

(1)證明:面;

(2)若與底面所成的角為, ,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

(1)要證面面垂直,一般先證線面垂直,設(shè)ACBD交點(diǎn)為O,則PO⊥BD,而正方形中AC⊥BD,于是可證得結(jié)論.

(2)由線面角的定義可得A為坐標(biāo)原點(diǎn),x,y軸的正方向建立空間直角坐標(biāo)系,然后寫出各點(diǎn)坐標(biāo),求出面BPC和面DPC的法向量,再由法向量的夾角的余弦值得二面角的余弦.

(1)證明:連接AC,BD交點(diǎn)為O,∵四邊形ABCD為正方形,∴

,,∴,又∵,∴

,∴.

(2)∵,過點(diǎn)P,垂足為E

∵PA與底面ABCD所成的角為,∴,

,設(shè),

如圖所示,以A為坐標(biāo)原點(diǎn),x,y軸的正方向建立空間直角坐標(biāo)系

設(shè)面法向量為

,∴,

,∴

同理的法向量,

∴求二面角的余弦值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,使用紙板可以折疊粘貼制作一個形狀為正六棱柱形狀的花型鎖盒蓋的紙盒.

(1)求該紙盒的容積;
(2)如果有一張長為60cm,寬為40cm的矩形紙板,則利用這張紙板最多可以制作多少個這樣的紙盒(紙盒必須用一張紙板制成).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.

(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個數(shù),b是從區(qū)間[2,4]中任取的一個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.

(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個數(shù),b是從區(qū)間[2,4]中任取的一個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

A.計(jì)算數(shù)列{2n1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: =1(a>b>0)的焦點(diǎn)F1 , F2 , 過右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),若△PQF1的周長為短軸長的2 倍.
(1)求C的離心率;
(2)設(shè)l的斜率為1,在C上是否存在一點(diǎn)M,使得 ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時,實(shí)行的是費(fèi)率浮動機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如下表:

交強(qiáng)險(xiǎn)浮動因素和費(fèi)率浮動比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin()=2
(Ⅰ)求曲線C和直線l在該直角坐標(biāo)系下的普通方程;
(Ⅱ)動點(diǎn)A在曲線C上,動點(diǎn)B在直線l上,定點(diǎn)P的坐標(biāo)為(﹣2,2),求|PB|+|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊答案