【題目】已知 ,且 為不共線的平面向量.
(1)若 ,求k的值;
(2)若 ,求k的值.

【答案】
(1)解:因為 ,

所以 ,

所以 ,

因為 ,

所以9﹣16k2=0,

解得


(2)解:因為 ,且 ,

所以存在實數(shù)λ,使得 ,

因為 ,且 不共線,

所以 ,

解得k=±2


【解析】1、由題意可得 , 即得到,由已知可得 k = .
2、由題意可得存在實數(shù)λ,使得 ,因為 不共線,解得k=±2
【考點精析】本題主要考查了數(shù)量積判斷兩個平面向量的垂直關系的相關知識點,需要掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=|x﹣1|,若方程f(x)= 有4個不相等的實根,則實數(shù)a的取值范圍是(
A.(﹣ ,1)
B.( ,1)
C.( ,1)
D.(﹣1,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)環(huán)保部通報,2016年10月24日起,京津冀周邊霧霾又起,為此,環(huán)保部及時提出防控建議,推動應對工作由過去“大水漫灌式”的減排方式轉變?yōu)閷崿F(xiàn)精確打擊.某燃煤企業(yè)為提高應急聯(lián)動的同步性,新購置并安裝了先進的廢氣處理設備,使產生的廢氣經過過濾后排放,以降低對大氣環(huán)境的污染,已知過濾后廢氣的污染物數(shù)量N(單位:mg/L)與過濾時間t(單位:小時)間的關系為N(t)=N0e﹣λt(N0 , λ均為非零常數(shù),e為自然對數(shù)的底數(shù))其中N0為t=0時的污染物數(shù)量,若經過5小時過濾后污染物數(shù)量為 N0
(1)求常數(shù)λ的值;
(2)試計算污染物減少到最初的10%至少需要多少時間?(精確到1小時) 參考數(shù)據(jù):ln3≈1.10,ln5≈1.61,ln10≈2.30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|< )的部分圖象如圖所示:
(1)試確定f(x)的解析式;
(2)若f( )= ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,點E是PC的中點,作EF⊥PB交PB于點F.
(1)求證PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),對x1∈[﹣1,2],x0∈[﹣1,2],使g(x1)=f(x0),則a的取值范圍是( )
A.
B.
C.[3,+∞)
D.(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=x2 在其定義域內的一個子區(qū)間(k﹣1,k+1)內不是單調函數(shù),則實數(shù)k的取值范圍( )
A.[1,+∞)
B.[1,
C.[1,+2)
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:f1(x)=f(x),當n≥2且x∈N*時,fn(x)=f(fn1(x)),對于函數(shù)f(x)定義域內的x0 , 若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點x0的最小正周期,x0稱為f(x)的n~周期點,已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對于函數(shù)f(x),下列說法正確的是(寫出所有正確命題的編號)

①1是f(x)的一個3~周期點;
②3是點 的最小正周期;
③對于任意正整數(shù)n,都有fn )= ;
④若x0∈( ,1],則x0是f(x)的一個2~周期點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:a∈R,且a>0,a+ ≥2,命題q:x0∈R,sinx0+cosx0= ,則下列判斷正確的是(
A.p是假命題
B.q是真命題
C.(¬q)是真命題
D.(¬p)∧q是真命題

查看答案和解析>>

同步練習冊答案