【題目】已知數(shù)列的前項(xiàng)和為,,),數(shù)列滿足:,且).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求證:數(shù)列為等比數(shù)列;

(Ⅲ)求數(shù)列的前項(xiàng)和的最小值.

【答案】(1)(2)見解析(3)

【解析】試題分析:(1)由,所以。(2)

所以)且。所以得證。(3)

(Ⅱ)得所以 ,所以是遞增數(shù)列

和最小,即所有的負(fù)數(shù)項(xiàng)的和,只需求到。

試題解析:(Ⅰ)由

則數(shù)列為以為公差的等差數(shù)列

因此

(Ⅱ)證明:因?yàn)?/span>

所以

所以

因?yàn)?/span>

所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

(Ⅲ)由(Ⅱ)得

所以

所以是遞增數(shù)列.

因?yàn)楫?dāng)時(shí),,當(dāng)時(shí),

當(dāng)時(shí),

所以數(shù)列從第3項(xiàng)起的各項(xiàng)均大于0,故數(shù)列的前2項(xiàng)之和最小.

記數(shù)列的前項(xiàng)和為,則 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考,取消文理科,實(shí)行,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:

年齡(歲)

頻數(shù)

5

15

10

10

5

5

了解

4

12

6

5

2

1

1)分別估計(jì)中青年和中老年對新高考了解的概率;

2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?

了解新高考

不了解新高考

總計(jì)

中青年

中老年

總計(jì)

附:.

0.050

0.010

0.001

3.841

6.635

10.828

3)若從年齡在的被調(diào)查者中隨機(jī)選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四張卡片,分別寫有學(xué)、習(xí)、強(qiáng)、國四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“學(xué)”“習(xí)”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率,利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,23四個(gè)隨機(jī)數(shù),分別代表學(xué)、習(xí)、強(qiáng)、國這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

210

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是直角梯形,,,側(cè)面底面,是以為底的等腰三角形.

(Ⅰ)證明:

(Ⅱ)若四棱錐的體積等于.問:是否存在過點(diǎn)的平面分別交,于點(diǎn),使得平面平面?若存在,求出的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>,再將所得圖象向右平移個(gè)單位,若得到的圖象關(guān)于原點(diǎn)對稱,則當(dāng)時(shí),的值域?yàn)? )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點(diǎn),,則的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會(huì)發(fā)布的201810月份至20199月份共12個(gè)月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是(

A.12個(gè)月的PMI值不低于50%的頻率為

B.12個(gè)月的PMI值的平均值低于50%

C.12個(gè)月的PMI值的眾數(shù)為49.4%

D.12個(gè)月的PMI值的中位數(shù)為50.3%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求曲線在點(diǎn)的切線方程;

2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案