【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點(diǎn),,則的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程;若不存在,請說明理由.

【答案】(1); (2)的面積取得最大值3, .

【解析】

(1)利用待定系數(shù)法結(jié)合題意求解橢圓方程即可;

(2)很明顯直線的斜率不為零,設(shè)出直線方程的x軸截距形式,得到面積函數(shù),結(jié)合函數(shù)的性質(zhì)確定面積最大時(shí)的直線方程即可.

(1)設(shè)橢圓

因?yàn)?/span>, 所以

即橢圓 .

(2)設(shè),不妨設(shè)

由題知,直線的斜率不為零,可設(shè)直線的方程為,

,

,

,

,可知,

,則,

當(dāng)時(shí),,即在區(qū)間上單調(diào)遞增,

,,

即當(dāng)時(shí),的面積取得最大值3,

此時(shí)直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是雙曲線的右支上一點(diǎn),分別為雙曲線的左右焦點(diǎn),的內(nèi)切圓的圓心橫坐標(biāo)為( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,使得對任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.

1)求的解析式;

2)若方程有兩個(gè)實(shí)根,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,),數(shù)列滿足:,且).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求證:數(shù)列為等比數(shù)列;

(Ⅲ)求數(shù)列的前項(xiàng)和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有6個(gè)球,紅藍(lán)兩色各半,從袋中不放回取球次,每次取1個(gè)球.

1)求下列事件的概率:

①事件,取出的球同色;

②事件,第次恰好將紅球全部取出;

2)若第次恰好取到第一個(gè)紅球,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為是參數(shù))以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的普通方程和的直線直角坐標(biāo)方程;

2)設(shè)直線軸交點(diǎn)分別是,點(diǎn)是圓上的動(dòng)點(diǎn),求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為3的菱形,平面.

1)求證:平面;

2)若與平面所成角為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為常數(shù)且,為參數(shù)).

1)求的直角坐標(biāo)方程;

2)若相交于、兩點(diǎn),以線段為一條邊作的內(nèi)接矩形,當(dāng)矩形的面積取最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)軟件研發(fā)公司為改進(jìn)產(chǎn)品,對軟件用戶每天在線的時(shí)間進(jìn)行調(diào)查,隨機(jī)抽取40名男性與20名女性對其每天在線的時(shí)間進(jìn)行了調(diào)查統(tǒng)計(jì),并繪制了如圖所示的條形圖,其中每天的在線時(shí)間4h以上(包括4h)的用戶被稱為資深用戶

1)根據(jù)上述樣本數(shù)據(jù),完成下面的2×2列聯(lián)表,并判定是否有95%的把握認(rèn)為是否為資深用戶與性別有關(guān);

資深用戶

資深用戶

總計(jì)

男性

女性

總計(jì)

2)用樣本估計(jì)總體,若從全體用戶中隨機(jī)抽取3人,設(shè)這3人中資深用戶的人數(shù)為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

附:,其中na+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步練習(xí)冊答案