設(shè)數(shù)列,且數(shù)列是等差數(shù)列,是等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和為,求的表達式;
(3)數(shù)列滿足,求數(shù)列的最大項.

(1)
(2)
(3)數(shù)列是單調(diào)遞減數(shù)列,最大項是

解析試題分析:解:(1)依題意得:( 
所以                2分
故當(dāng)時,有

 ,         3分
又因為n=1時,也適合上式,
所以                    4分

            6分
(2)

 
            7分

                8分
上面兩式相減得,
那么

所以               10分
(3)
,        12分

顯然對任意的正整數(shù)都成立,
所以數(shù)列是單調(diào)遞減數(shù)列,最大項是.            14分
考點:等比數(shù)列,累加法
點評:主要是通過遞推關(guān)系式采用累加法求解通項公式和結(jié)合等比數(shù)列的公式求解,同時結(jié)合函數(shù)的性質(zhì)來判定數(shù)列的單調(diào)性,進而求解,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列的公差為,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和.數(shù)列滿足:.
(1)求的通項.并比較的大小;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和,
(Ⅰ)求的通項公式;
(Ⅱ) 令,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,
(1)若,求;
(2)若,求的前6項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足S n + a n= 2n +1.
(1)寫出a1,a2a3, 并推測a n的表達式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下圖是一個按照某種規(guī)律排列出來的三角形數(shù)陣

假設(shè)第行的第二個數(shù)為
(1)依次寫出第七行的所有7個數(shù)字(不必說明理由);
(2)寫出的遞推關(guān)系(不必證明),并求出的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線,數(shù)列的首項,且
當(dāng)時,點恒在曲線上,數(shù)列{}滿足
(1)試判斷數(shù)列是否是等差數(shù)列?并說明理由;
(2)求數(shù)列的通項公式;
(3)設(shè)數(shù)列滿足,試比較數(shù)列的前項和的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中。
對自然數(shù)k,規(guī)定為{an}的k階差分?jǐn)?shù)列,其中。
(1)已知數(shù)列{an}的通項公式,試判斷是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項a1=1,且滿足,求數(shù)列{an}的通項公式。
(3)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得對一切自然都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由。

查看答案和解析>>

同步練習(xí)冊答案