已知數(shù)列{an}滿足S n + a n= 2n +1.
(1)寫出a1,a2,a3, 并推測a n的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

(1) a1= a2=,a3= an=  (2)用數(shù)學(xué)歸納法證明

解析試題分析:(1)由Sn+an=2n+1得a1=, a2=,a3=     3分
an=     6分
(2)證明:當(dāng)n=1時,命題成立     7分
假設(shè)n=k時命題成立,即ak=      8分
當(dāng)n=k+1時,a1+ a 2+…+ ak + ak+1+ ak+1=2(k+1)+1      9分
a1+ a 2+…+ ak =2k+1-a k
∴2ak+1=4-      11分
ak+1=2-成立     12分
根據(jù)上述知對于任何自然數(shù)n,結(jié)論成立     13分
考點(diǎn):本題考查了數(shù)學(xué)歸納法的運(yùn)用
點(diǎn)評:運(yùn)用數(shù)學(xué)歸納法證明問題時,關(guān)鍵是n=k+1時命題成立的推證,此步證明要具有目標(biāo)意識,注意與最終要達(dá)到的解題目標(biāo)進(jìn)行分析比較,以此確定和調(diào)控解題的方向,使差異逐步減小,最終實(shí)現(xiàn)目標(biāo)完成解題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且對任意正整數(shù),點(diǎn)都在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若設(shè)求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列前三項(xiàng)的和為,前三項(xiàng)的積為.
(Ⅰ)求等差數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,成等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列,且數(shù)列是等差數(shù)列,是等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的表達(dá)式;
(3)數(shù)列滿足,求數(shù)列的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上是增函數(shù)
(1)求實(shí)數(shù)的取值集合
(2)當(dāng)取值集合中的最小值時, 定義數(shù)列;滿足, , 設(shè), 證明:數(shù)列是等比數(shù)列, 并求數(shù)列的通項(xiàng)公式.
(3)若, 數(shù)列的前項(xiàng)和為, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),且不等式對任意的實(shí)數(shù)恒成立,數(shù)列滿足,.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)各項(xiàng)均為正實(shí)數(shù)的數(shù)列的前項(xiàng)和為,且滿足).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的通項(xiàng)公式為),若,)成等差數(shù)列,求的值;
(Ⅲ)證明:存在無窮多個三邊成等比數(shù)列且互不相似的三角形,其三邊長為數(shù)列中的三項(xiàng),,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An)在雙曲線y2-x2=1上,點(diǎn)()在直線y=-x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和。
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值。

查看答案和解析>>

同步練習(xí)冊答案