等差數(shù)列的公差為,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

(1)  (2)

解析試題分析:(Ⅰ)解:由已知得,           2分
成等比數(shù)列,所以,         4分
解得,                                   5分
所以.                        6分
(Ⅱ)由(Ⅰ)可得,           8分
所以
.       12分
考點(diǎn):等差數(shù)列、等比數(shù)列
點(diǎn)評(píng):本小題主要考查等差數(shù)列、等比數(shù)列等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列滿足: 
(I)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(II)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長,則稱為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù),,和數(shù)列1,,()提出一個(gè)正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),點(diǎn)都在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若設(shè)求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比
(1)求;(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,流程圖給出了無窮等差整數(shù)列,時(shí),輸出的時(shí),輸出的(其中d為公差)

(I)求數(shù)列的通項(xiàng)公式;
(II)是否存在最小的正數(shù)m,使得成立?若存在,求出m的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列,且數(shù)列是等差數(shù)列,是等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的表達(dá)式;
(3)數(shù)列滿足,求數(shù)列的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列的前n項(xiàng)和為.已知,且成等比數(shù)列,求的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案