設(shè)全集U=R,A={x∈N|y=ln(2-x)},B={x|x(x-2)≤0},A∩B=( 。
A、{x|x≥1}
B、{x|0≤x<2}
C、{1}
D、{0,1}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出A中x的值確定出A,求出B中不等式的解集確定出B,找出A與B的交集即可.
解答: 解:由A中y=ln(2-x),得到2-x>0,即x<2,
∴A={x|x<2,x∈N}={0,1},
由B中不等式解得:0≤x≤2,即B={x|0≤x≤2},
則A∩B={0,1}.
故選:D.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镈的單調(diào)函數(shù)y=f(x),如果存在區(qū)間[a,b]⊆D,滿足當(dāng)定義域?yàn)槭荹a,b]時(shí),f(x)的值域也是[a,b],則稱[a,b]是該函數(shù)的“可協(xié)調(diào)區(qū)間”;如果函數(shù)y=
(a2+a)x-1
a2x
(a≠0)的一個(gè)可協(xié)調(diào)區(qū)間是[m,n],則n-m的最大值是( 。
A、2
B、3
C、
2
3
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(1,0),
b
=(0,1),且
c
a
=
c
b
=1,則|
c
+t
a
+
1
t
b
|(t>0)的最小值是( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在區(qū)間[-2015,2015]上的函數(shù)f(x)滿足:對(duì)于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,且x>0時(shí),有f(x)>2014,f(x)的最大值、最小值分別為M,N,則M+N的值為(  )
A、2014B、2015
C、4028D、4030

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(cosx-sinx,2sinx),
b
=(cosx+sinx,cosx),f(x)=
a
b
,將函數(shù)f(x)的圖象平移而得到函數(shù)g(x)=
2
cos2x-1,則平移方法可以是(  )
A、左移
π
8
個(gè)單位,下移1個(gè)單位
B、左移
π
4
個(gè)單位,下移1個(gè)單位
C、右移
π
4
個(gè)單位,上移1個(gè)單位
D、左移
π
8
個(gè)單位,上移1個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b為兩條直線α,β為兩個(gè)平面,則下列四個(gè)命題中,正確的命題是( 。
A、若a⊥α,b⊥β,a⊥b,則α⊥β
B、若a∥α,b∥β,α∥β,則a∥b
C、若a?α,b?β,a∥b,則α∥β
D、若a∥α,α⊥β,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線x+y+m=0(m≠0)與曲線E:
x2
a
+
y2
b
=1(a>0)相交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),且
OP
=
1
2
OA
+
OB
),若直線OP的斜率為-
1
2
,則曲線E的離心率是( 。
A、
2
2
B、
3
2
C、
3
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲向靶子A射擊兩次,乙向靶子B射擊一次.甲每次射擊命中靶子的概率為0.8,命中得5分;乙命中靶子的概率為0.5,命中得10分.
(Ⅰ)求甲、乙二人共命中一次目標(biāo)的概率;
(Ⅱ)設(shè)X為二人得分之和,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線Ax+By+C=0與圓x2+y2=4相交于M,N兩點(diǎn),若C2=A2+B2,則
OM
ON
(O為坐標(biāo)原點(diǎn))等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案