【題目】在正方體ABCD﹣A1B1C1D1中,E,F分別為B1C1,C1D1的中點(diǎn),點(diǎn)P是上底面A1B1C1D1內(nèi)一點(diǎn),且AP∥平面EFDB,則cos∠APA1的最小值是( )
A.B.C.D.
【答案】C
【解析】
連結(jié)AC、BD,交于點(diǎn)O,連結(jié)A1C1,交EF于M,連結(jié)OM,則AOPM,從而A1P=C1M,由此能求出cos∠APA1的值.
解:如圖,連結(jié)AC、BD,交于點(diǎn)O,連結(jié)A1C1,交EF于M,連結(jié)OM,
面,為底面A1B1C1D1內(nèi)一點(diǎn),
∴cos∠APA1,
所以當(dāng)取最小值時,cos∠APA1有最小值,
且E,F分別為B1C1,C1D1的中點(diǎn),分別取和的中點(diǎn),,
則有,進(jìn)而得到面,又AP∥平面EFDB,則點(diǎn)必在上,
明顯地,當(dāng)點(diǎn)在上時,取最小值,此時取最小值,cos∠APA1有最小值,,此時,如下圖,
設(shè)正方形ABCD﹣A1B1C1D1中棱長為1,∵在正方形ABCD﹣A1B1C1D1中,
E,F分別為B1C1,C1D1的中點(diǎn),又點(diǎn)P是底面A1B1C1D1內(nèi)一點(diǎn),
且AP∥平面EFDB,且面面于,
,又,,四邊形為平行四邊形
∴AOPM,又 E,F分別為B1C1,C1D1的中點(diǎn),,且,
,又,∴A1P=C1M,
∴cos∠APA1,即cos∠APA1的最小值是.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點(diǎn),F為線段PB上的一點(diǎn),∠CDP=120°,AD=3,AP=5,.
(Ⅰ)試確定點(diǎn)F的位置,使得直線EF∥平面PDC;
(Ⅱ)若PB=3BF,求直線AF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為.過點(diǎn)的直線與拋物線相交于、兩點(diǎn),、分別與軸相交于、兩點(diǎn),當(dāng)軸時,.
(1)求拋物線的方程;
(2)設(shè)的面積為,面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是正三角形,是等腰直角三角形,,.
(1)證明:平面平面;
(2)設(shè),點(diǎn)為的中點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:,分別是其左、右焦點(diǎn),過的直線l與橢圓C交于A,B兩點(diǎn),且橢圓C的離心率為,的內(nèi)切圓面積為,.
(I)求橢圓C的方程;
(II)若時,求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身機(jī)構(gòu)統(tǒng)計(jì)了去年該機(jī)構(gòu)所有消費(fèi)者的消費(fèi)金額(單位:元),如下圖所示:
(1)將去年的消費(fèi)金額超過 3200 元的消費(fèi)者稱為“健身達(dá)人”,現(xiàn)從所有“健身達(dá)人”中隨機(jī)抽取 2 人,求至少有 1 位消費(fèi)者,其去年的消費(fèi)金額超過 4000 元的概率;
(2)針對這些消費(fèi)者,該健身機(jī)構(gòu)今年欲實(shí)施入會制,詳情如下表:
會員等級 | 消費(fèi)金額 |
普通會員 | 2000 |
銀卡會員 | 2700 |
金卡會員 | 3200 |
預(yù)計(jì)去年消費(fèi)金額在內(nèi)的消費(fèi)者今年都將會申請辦理普通會員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會申請辦理銀卡會員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會申請辦理金卡會員. 消費(fèi)者在申請辦理會員時,需-次性繳清相應(yīng)等級的消費(fèi)金額.該健身機(jī)構(gòu)在今年底將針對這些消費(fèi)者舉辦消費(fèi)返利活動,現(xiàn)有如下兩種預(yù)設(shè)方案:
方案 1:按分層抽樣從普通會員, 銀卡會員, 金卡會員中總共抽取 25 位“幸運(yùn)之星”給予獎勵: 普通會員中的“幸運(yùn)之星”每人獎勵 500 元; 銀卡會員中的“幸運(yùn)之星”每人獎勵 600 元; 金卡會員中的“幸運(yùn)之星”每人獎勵 800 元.
方案 2:每位會員均可參加摸獎游戲,游戲規(guī)則如下:從-個裝有 3 個白球、 2 個紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個球.若摸到紅球的總數(shù)消費(fèi)金額/元為 2,則可獲得 200 元獎勵金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎勵金;其他情況不給予獎勵. 規(guī)定每位普通會員均可參加 1 次摸獎游戲;每位銀卡會員均可參加 2 次摸獎游戲;每位金卡會員均可參加 3 次摸獎游戲(每次摸獎的結(jié)果相互獨(dú)立) .
以方案 2 的獎勵金的數(shù)學(xué)期望為依據(jù),請你預(yù)測哪-種方案投資較少?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,函數(shù)有最小值,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,曲線在點(diǎn)處的切線與直線平行,求的值;
(2)若,且函數(shù)的值域?yàn)?/span>,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com