【題目】設(shè)函數(shù),.
(1)若,討論的零點(diǎn)個(gè)數(shù);
(2)證明:.
【答案】(1)當(dāng)時(shí),有唯一零點(diǎn);當(dāng)時(shí),有兩個(gè)零點(diǎn);(2)證明見解析
【解析】
(1)求得函數(shù)的導(dǎo)數(shù),求得當(dāng),函數(shù)有唯一的零點(diǎn);
當(dāng),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,結(jié)合最值,即可求解.
(2)令,求得導(dǎo)數(shù),令,得到在有唯一零點(diǎn),結(jié)合導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.
(1)由題意,函數(shù),則,
①當(dāng),則函數(shù),此時(shí)有唯一的零點(diǎn);
②當(dāng),令,可得,
- | + | |
所以,最多兩個(gè)零點(diǎn),
當(dāng)時(shí),可得且,所以,
所以,故時(shí),,
所以在有一個(gè)零點(diǎn);
當(dāng)時(shí),,所以在有一個(gè)零點(diǎn).
綜上可知,當(dāng)時(shí),有唯一零點(diǎn);當(dāng)時(shí),有兩個(gè)零點(diǎn).
(2)令,
則,
令,可得在是增函數(shù),
且(,
所以在有唯一零點(diǎn),且,
當(dāng)時(shí),,在上為減函數(shù),
當(dāng)時(shí),,在上為增函數(shù),
故,且,
所以,∴,
所以成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的課外文化生活,某中學(xué)積極探索開展課外文體活動(dòng)的新途徑及新形式,取得了良好的效果.為了調(diào)查學(xué)生的學(xué)習(xí)積極性與參加文體活動(dòng)是否有關(guān),學(xué)校對(duì)200名學(xué)生做了問卷調(diào)查,列聯(lián)表如下:
參加文體活動(dòng) | 不參加文體活動(dòng) | 合計(jì) | |
學(xué)習(xí)積極性高 | 80 | ||
學(xué)習(xí)積極性不高 | 60 | ||
合計(jì) | 200 |
已知在全部200人中隨機(jī)抽取1人,抽到學(xué)習(xí)積極性不高的學(xué)生的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.9%的把握認(rèn)為學(xué)習(xí)積極性高與參加文體活動(dòng)有關(guān)?請(qǐng)說明你的理由;
(3)若從不參加文體活動(dòng)的同學(xué)中按照分層抽樣的方法選取5人,再從所選出的5人中隨機(jī)選取2人,求至少有1人學(xué)習(xí)積極性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn),過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).
(1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).
(1)若過點(diǎn),且,求的斜率;
(2)若,且的斜率為,當(dāng)時(shí),求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足,數(shù)列為數(shù)列,記.
(1)寫出一個(gè)滿足,且的數(shù)列;
(2)若,,證明:數(shù)列是遞增數(shù)列的充要條件是;
(3)對(duì)任意給定的整數(shù),是否存在首項(xiàng)為0的數(shù)列,使得?如果存在,寫出一個(gè)滿足條件的數(shù)列;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】趙爽是我國漢代數(shù)學(xué)家、天文學(xué)家,他在注解《周髀算經(jīng)》時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”,它被2002年國際數(shù)學(xué)家大會(huì)選定為會(huì)徽.“趙爽弦圖”是以弦為邊長(zhǎng)得到的正方形,該正方形由4個(gè)全等的直角三角形加上中間一個(gè)小正方形組成類比“趙爽弦圖”,可類似地構(gòu)造如圖所示的圖形它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形設(shè)DF=2AF=2,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自三個(gè)全等三角形(陰影部分)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從①前項(xiàng)和,②,③且,這三個(gè)條件中任選一個(gè),補(bǔ)充到下面的問題中,并完成解答.
在數(shù)列中,,_______,其中.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若成等比數(shù)列,其中,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地中小學(xué)生的近視形成原因,教育部門委托醫(yī)療機(jī)構(gòu)對(duì)該地所有中小學(xué)生的視力做了一次普查.現(xiàn)該地中小學(xué)生人數(shù)和普查得到的近視情況分別如圖1和圖2所示.
(1)求該地中小學(xué)生的平均近視率(保留兩位有效數(shù)字);
(2)為調(diào)查中學(xué)生用眼衛(wèi)生習(xí)慣,該地用分層抽樣的方法從所有初中生和高中生中確定5人進(jìn)行問卷調(diào)查,再從這5人中隨機(jī)選取2人繼續(xù)訪談,則此2人全部來自高中年級(jí)的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com