【題目】如圖所示的多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點,F為線段PB上的一點,∠CDP=120°,AD=3,AP=5,.
(Ⅰ)試確定點F的位置,使得直線EF∥平面PDC;
(Ⅱ)若PB=3BF,求直線AF與平面PBC所成角的正弦值.
【答案】(Ⅰ)當點F為BP中點時,使得直線EF∥平面PDC;(Ⅱ).
【解析】
(Ⅰ)設F為BP中點,取AP中點G,連結EF、EG、FG,推導出GF∥AB∥CD,EG∥DP,從而平面GEF∥平面PDC,進而當點F為BP中點時,使得直線EF∥平面PDC.
(Ⅱ)以D為原點,DC為x軸,在平面PDC中過D作CD垂線為y軸,DA為z軸,建立空間直角坐標系,求得平面PBC的一個法向量,的坐標,代入公式sinθ求解.
(Ⅰ)設F為BP中點,取AP中點G,連結EF、EG、FG,
∵AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點,
∴GF∥AB∥CD,EG∥DP,
∵EG∩FG=G,DP∩CD=D,∴平面GEF∥平面PDC,
∵EF平面GEF,
∴當點F為BP中點時,使得直線EF∥平面PDC.
(Ⅱ)以D為原點,DC為x軸,在平面PDC中過D作CD垂線為y軸,DA為z軸,建立空間直角坐標系,
∵E為AD的中點,F為線段PB上的一點,∠CDP=120°,AD=3,AP=5,.
∴cos120°,解得CD=2,
所以A(0,0,3),B(2,0,3),P(﹣2,2,0),C(2,0,0),
設F(a,b,c),由PB=3BF,得,
即(a﹣2,b,c﹣3)(﹣8,2,﹣3),
解得a,b,c=2,∴F(,,2),
(,﹣1),(0,0,3),(﹣4,2,0),
設平面PBC的一個法向量(x,y,z),
則,取x=1,得(1,,0),
設直線AF與平面PBC所成角為θ,
則直線AF與平面PBC所成角的正弦值為:
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,
(1)若,且在其定義域上存在單調遞減區(qū)間,求實數(shù)的取值范圍;
(2)設函數(shù), ,若恒成立,求實數(shù)的取值范圍;
(3)設函數(shù)的圖象與函數(shù)的圖象交于點、,過線段的中點作軸的垂線分別交, 于點、,證明: 在點處的切線與在點處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,在高三年級中隨機選取名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于小時的有人,在這人中分數(shù)不足分的有人;在每周線上學習數(shù)學時間不足于小時的人中,在檢測考試中數(shù)學平均成績不足分的占.
(1)請完成列聯(lián)表;并判斷是否有的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;
分數(shù)不少于分 | 分數(shù)不足分 | 合計 | |
線上學習時間不少于小時 | |||
線上學習時間不足小時 | |||
合計 |
(2)在上述樣本中從分數(shù)不足于分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于小時和線上學習時間不足小時的學生共名,若在這名學生中隨機抽取人,求這人每周線上學習時間都不足小時的概率.(臨界值表僅供參考)
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)將的方程化為普通方程,將的方程化為直角坐標方程;
(2)已知直線的參數(shù)方程為(,為參數(shù),且),與交于點,與交于點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.
(1)求圓的極坐標方程;
(2)若直線:(為參數(shù))被圓截得的弦長為2,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面平面,為矩形,為等腰梯形,,分別為,中點,,,.
(1)證明:平面;
(2)求二面角的正弦值;
(3)線段上是否存在點,使得平面,若存在求出的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若,求的極坐標方程;
(2)若與恰有4個公共點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F分別為B1C1,C1D1的中點,點P是上底面A1B1C1D1內一點,且AP∥平面EFDB,則cos∠APA1的最小值是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com