【題目】已知橢圓的離心率為,過定點(diǎn)的直線l與橢圓E相交于A,B兩點(diǎn),C為橢圓的左頂點(diǎn),當(dāng)直線l過點(diǎn)時(shí),O為坐標(biāo)原點(diǎn))的面積為

1)求橢圓E的方程;

2)求證:當(dāng)直線l不過C點(diǎn)時(shí),為定值.

【答案】1;(2為定值.

【解析】

1)根據(jù)題意可得,設(shè),由,得代入橢圓方程可得,進(jìn)而可得橢圓的方程;

2)根據(jù)題意,設(shè),,直線的方程為,聯(lián)立方程,經(jīng)計(jì)算可得,即可得到為定值.

1)由題意,設(shè),直線的方程為,

,即,

將點(diǎn)代入中,得,故,

又點(diǎn)在橢圓上,解得,

因橢圓的離心率,故,

所以,橢圓的方程為.

2)由題意,設(shè)直線的方程為,設(shè),

聯(lián)立,消去,

所以,,

當(dāng)直線不過時(shí),直線的斜率,直線的斜率,

所以

即直線與直線垂直,故為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,的中點(diǎn),上一點(diǎn),且

1)求證:平面;

2)若求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著現(xiàn)代電子技術(shù)的迅猛發(fā)展,關(guān)于元件和系統(tǒng)可靠性的研究已發(fā)展成為一門新的學(xué)科——可靠性理論.在可靠性理論中,一個(gè)元件正常工作的概率稱為該元件的可靠性.元件組成系統(tǒng),系統(tǒng)正常工作的概率稱為該系統(tǒng)的可靠性.現(xiàn)有,)種電子元件,每種2個(gè),每個(gè)元件的可靠性均為).當(dāng)某元件不能正常工作時(shí),該元件在電路中將形成斷路.現(xiàn)要用這個(gè)元件組成一個(gè)電路系統(tǒng),有如下兩種連接方案可供選擇,當(dāng)且僅當(dāng)從AB的電路為通路狀態(tài)時(shí),系統(tǒng)正常工作.

1)(i)分別寫出按方案①和方案②建立的電路系統(tǒng)的可靠性、(用表示);

ii)比較的大小,說明哪種連接方案更穩(wěn)定可靠;

2)設(shè),,已知按方案②建立的電路系統(tǒng)可以正常工作,記此時(shí)系統(tǒng)中損壞的元件個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面是邊長(zhǎng)為4的正方形,為正三角形,的中點(diǎn),過的平面平行于平面,且平面與平面的交線為,與平面的交線為

1)在圖中作出四邊形(不必說出作法和理由);

2)若,求平面與平面形成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求曲線的公切線方程:

2)若有兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),試寫出方程根的個(gè)數(shù).(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直角梯形中,,,四邊形為矩形,,平面平面.

1)求證:平面;

2)求二面角的正弦值;

3)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別,過的直線交雙曲線右支于,兩點(diǎn).的平分線交,若,則雙曲線的離心率為( )

A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,我國老年人口比例不斷上升,造成日趨嚴(yán)峻的人口老齡化問題.20191012日,北京市老齡辦、市老齡協(xié)會(huì)聯(lián)合北京師范大學(xué)中國公益研究院發(fā)布《北京市老齡事業(yè)發(fā)展報(bào)告(2018)》,相關(guān)數(shù)據(jù)有如下圖表.規(guī)定年齡在15歲至59歲為勞動(dòng)年齡,具備勞動(dòng)力,60歲及以上年齡為老年人,據(jù)統(tǒng)計(jì),2018年底北京市每2.4名勞動(dòng)力撫養(yǎng)1名老年人.

(Ⅰ)請(qǐng)根據(jù)上述圖表計(jì)算北京市2018年戶籍總?cè)丝跀?shù)和北京市2018年的勞動(dòng)力數(shù);(保留兩位小數(shù))

(Ⅱ)從2014年起,北京市老齡人口與年份呈線性關(guān)系,比照2018年戶籍老年人人口年齡構(gòu)成,預(yù)計(jì)到2020年年底,北京市90以上老人達(dá)到多少人?(精確到1人)

(附:對(duì)于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘法估計(jì)分別為:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案