設(shè)函數(shù)
.
(Ⅰ)若
時,求
的單調(diào)區(qū)間;
(Ⅱ)
時,
有極值,且對任意
時,求
的取值范圍.
(1)
在
和
上單調(diào)遞增,在
上單調(diào)遞減.
(2)
.
試題分析:(1)求導(dǎo)得
,根據(jù)
判斷出兩根的大小即可得到單調(diào)區(qū)間;(2)根據(jù)
時,
有極值求出
,即可得到
時的單調(diào)性,所以可以得出
的最大值.
試題解析:(1)
.
當
時,
,
,
∴
在
和
上單調(diào)遞增,在
上單調(diào)遞減.
(2)∵
時
有極值,∴
,解得
,
∴
,
.
,∴
在
上單調(diào)遞增.
∵對任意
,則
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
。
(1)當
時,求函數(shù)
的單調(diào)區(qū)間;
(2)求證:當
時,對所有的
都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
.
(Ⅰ)當
,
時,求
的單調(diào)區(qū)間;
(2)當
,且
時,求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)設(shè)
,試討論
單調(diào)性;
(2)設(shè)
,當
時,若
,存在
,使
,求實數(shù)
的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(Ⅰ)若
,求
的極大值;
(Ⅱ)若
在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
.
(Ⅰ)求
的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)
在
上只有一個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
在(0, 1)上不是單調(diào)函數(shù),則實數(shù)
的取值范圍為
_____.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
在
上單調(diào)遞增,那么實數(shù)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
在R上可導(dǎo),且
,則
的大小關(guān)系是( )
查看答案和解析>>