函數(shù)f(x)=cos(2x-
π
6
)的最小正周期是( 。
A、
π
2
B、π
C、2π
D、4π
考點(diǎn):三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意得ω=2,再代入復(fù)合三角函數(shù)的周期公式T=
|ω|
求解.
解答: 解:根據(jù)復(fù)合三角函數(shù)的周期公式T=
|ω|
得,
函數(shù)f(x)=cos(2x-
π
6
)的最小正周期是π,
故選B.
點(diǎn)評(píng):本題考查了三角函數(shù)的周期性,以及復(fù)合三角函數(shù)的周期公式T=
|ω|
應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a>c,已知
BA
BC
=2,cosB=
1
3
,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y滿足約束條件
x-y≥0
x+2y≤3
x-2y≤1
,則z=x+4y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足
y≤1
x-y-1≤0
x+y-1≥0
,則z=
3
x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=1,
b
=(2,1),且λ
a
+
b
=
0
(λ∈R),則|λ|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,記C的焦點(diǎn)為F,則直線AF的斜率為( 。
A、-
4
3
B、-1
C、-
3
4
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x(x+2)>0
|x|<1
的解集為( 。
A、{x|-2<x<-1}
B、{x|-1<x<0}
C、{x|0<x<1}
D、{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)樣本數(shù)據(jù)x1,x2,…,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( 。
A、1+a,4
B、1+a,4+a
C、1,4
D、1,4+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=a-2t
y=-4t
(t為參數(shù)),圓C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案