【題目】已知函數(shù).若圖象上的點(diǎn)處的切線斜率為-4,求的極大值。
【答案】
【解析】
試題分析:
由題已知點(diǎn)處的切線斜率為,可獲得兩個(gè)條件;即:函數(shù)圖像過(guò)點(diǎn),且該點(diǎn)處的導(dǎo)數(shù)為。可得兩個(gè)方程,求出的值,再由求出的函數(shù)解析式,可運(yùn)用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間和極值。即:為函數(shù)的增區(qū)間,反之為減區(qū)間。再判斷出極值。
試題解析:
(1)∵f′(x)=x2+2ax-b,
∴由題意可知:f′(1)=-4且f(1)=
即
解得
∴f(x)=x3-x2-3x,
f′(x)=x2-2x-3=(x+1)(x-3).
令f′(x)=0,得x1=-1,x2=3.
由此可知,當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (-∞,-1) | -1 | (-1,3) | 3 | (3,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 極大值 | 極小值 |
∴當(dāng)x=-1時(shí),f(x)取極大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是R上的任意函數(shù),則下列敘述正確的是( )
A.f(x)f(﹣x)是奇函數(shù)
B.f(x)|f(﹣x)|是奇函數(shù)
C.f(x)﹣f(﹣x)是偶函數(shù)
D.f(x)+f(﹣x)是偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,經(jīng)過(guò)橢圓的左頂點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).
(1)求橢圓的方程;
(2)已知點(diǎn)為線段的中點(diǎn), ,并且交橢圓于點(diǎn).
①是否存在定點(diǎn),對(duì)于任意的都有?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
②求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)。
(Ⅰ)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)求函數(shù)在區(qū)間上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,已知是以為圓心,以4為半徑的圓上的動(dòng)點(diǎn),與所連線段的垂直平分線與線段交于點(diǎn)。
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)已知點(diǎn)坐標(biāo)為(4,0),并且傾斜角為銳角的直線經(jīng)過(guò)點(diǎn)并且與曲線相交于兩點(diǎn),
(ⅰ)求證:;
(ⅱ)若,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面圖①、圖②是某校調(diào)查部分學(xué)生是否知道父母親生日情況的扇形和條形統(tǒng)計(jì)圖:
根據(jù)上圖信息,解答下列問(wèn)題:
(1)求本次被調(diào)查學(xué)生的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校共有2700名學(xué)生,你估計(jì)這所學(xué)校有多少名學(xué)生知道父母親的生日?
(3)通過(guò)對(duì)以上數(shù)據(jù)的分析,你有何感想?(用一句話回答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒(méi)有平局。在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為.比賽順序?yàn)椋菏紫扔杉缀鸵疫M(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類(lèi)推,在比賽中,有選手獲勝滿(mǎn)兩局就取得比賽的勝利,比賽結(jié)束.
(1)求恰好進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開(kāi)始到比賽結(jié)束所需比賽的局?jǐn)?shù)為,求的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:和直線:,點(diǎn)P是圓C上的一動(dòng)點(diǎn),直線與x軸,y軸的交點(diǎn)分別為點(diǎn)A、B。
(1)求與圓C相切且平行直線的直線方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)對(duì)于函數(shù),,,若對(duì)于區(qū)間上的任意一個(gè),都有,則稱(chēng)函數(shù)是函數(shù),在區(qū)間上的一個(gè)“分界函數(shù)”.已知,,問(wèn)是否存在實(shí)數(shù),使得函數(shù)是函數(shù),在區(qū)間上的一個(gè)“分界函數(shù)”?若存在,求實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com