已知函數(shù)的遞增區(qū)間是
① 求的值。
② 設(shè),求在區(qū)間上的最大值和最小值。

(1)a=-1
(2)當(dāng) 當(dāng)

解析試題分析:解:① 因 函數(shù)的遞增區(qū)間是,則
當(dāng)
當(dāng)
所以  

在[-3,0]上單調(diào)遞增,在[0,2]上單調(diào)遞減;
當(dāng)
當(dāng)
考點(diǎn):函數(shù)的單調(diào)性
點(diǎn)評(píng):主要是考查了函數(shù)的單調(diào)性的運(yùn)用,以及最值的求解,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).設(shè)關(guān)于x的不等式的解集為且方程的兩實(shí)根為.
(1)若,求的關(guān)系式;
(2)若,求的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中為常數(shù),設(shè)為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若在區(qū)間上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)求函數(shù)的定義域;
(2)判斷并證明函數(shù)的奇偶性;
(3)若,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)恒過(guò)定點(diǎn)
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R.
(1)若a+b≥0,求證:f(a)+f(b)≥f(-a)+f(-b);
(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) .
(1)求函數(shù)的零點(diǎn);
(2)若方程上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)是定義在區(qū)間上的偶函數(shù),且滿足
(1)求函數(shù)的周期;
(2)已知當(dāng)時(shí),.求使方程上有兩個(gè)不相等實(shí)根的的取值集合M.
(3)記,表示使方程上有兩個(gè)不相等實(shí)根的的取值集合,求集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若函數(shù)都在區(qū)間上有定義,對(duì)任意,都有成立,則稱函數(shù)為區(qū)間上的“伙伴函數(shù)”
(1)若為區(qū)間上的“伙伴函數(shù)”,求的范圍。
(2)判斷是否為區(qū)間上的“伙伴函數(shù)”?
(3)若為區(qū)間上的“伙伴函數(shù)”,求的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案