已知函數(shù),其中為常數(shù),設(shè)為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若在區(qū)間上的最大值為,求的值.
(1) (2)
解析試題分析:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)a=-1時(shí),f(x)=lnx-x,f′(x)=-1=令f′(x)>0得,0<x<1,令f′(x)<0得,x>1或x<0,∴函數(shù)f(x)增區(qū)間為(0,1),減區(qū)間為(1,+∞);
(2)f′(x)=
①當(dāng)a>0時(shí),x>0,∴f′(x)>0,∴函數(shù)f(x)在(0.e]上是增函數(shù),
∴f(x)max=f(e)=2,∴a+1=2,∴a=e符號(hào)題意;
②當(dāng)a<0時(shí),令f′(x)=0得x=-,
1°若0<-≤e,即-≤a<0時(shí)
∴f(x)max=f(-a)=2
∴-1+ln(-a)=2,
∴a=-e2不符號(hào)題意,舍去;
2°若-a>e,即a<-e時(shí),在(0,e]上f′(x)>0.∴f(x)在(0.e]上是增函數(shù),故f(x)max=f()=2∴a=不符號(hào)題意,舍去;故a=
考點(diǎn):導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性
點(diǎn)評(píng):考查利用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性、極值、最值和分類討論的思想方法,注意函數(shù)的定義域;屬難題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)求當(dāng)時(shí),函數(shù)的表達(dá)式;
(2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)確定的值,使為奇函數(shù);
(2)當(dāng)為奇函數(shù)時(shí),求的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)討論單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明:當(dāng)時(shí),證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖像過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為
直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中為實(shí)數(shù);
(1)當(dāng)時(shí),試討論函數(shù)的零點(diǎn)的個(gè)數(shù);
(2)已知不等式對(duì)任意都成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,
(Ⅰ)若曲線與曲線相交,且在交點(diǎn)處有相同的切線,求的值及該切線的方程;
(Ⅱ)設(shè)函數(shù),當(dāng)存在最小值時(shí),求其最小值的解析式;
(Ⅲ)對(duì)(Ⅱ)中的,證明:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;
(III)若,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com