精英家教網 > 高中數學 > 題目詳情
已知雙曲線的離心率為2,焦點與橢圓的焦點相同,求雙曲線的方程及焦點坐標。
 焦點

試題分析:在橢圓
所以焦點  
在雙曲線中
所求雙曲線方程: 焦點.
點評:本題首先求解橢圓得出焦點,進而得到雙曲線的焦點坐標,借助關系式可求得值,利用可求出值,確定方程
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

長為3的線段的端點分別在軸上移動,動點滿足,則動點的軌跡方程是              

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線與平面平行,P是直線上的一點,平面內的動點B滿足:PB與直線。那么B點軌跡是                           
A.雙曲線B.橢圓C.拋物線D.兩直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若方程C:是常數)則下列結論正確的是(  )
A.,方程C表示橢圓B.,方程C表示雙曲線
C.,方程C表示橢圓D.,方程C表示拋物線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過雙曲線的右焦點作圓的切線(切點為),交軸于點.若為線段的中點,則雙曲線的離心率為
A.2B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

方程表示焦點在軸的雙曲線,則的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線的左右頂點分別是,點是雙曲線上異于點的任意一點。若直線的斜率之積等于2,則該雙曲線的離心率等于        

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

以雙曲線:的右焦點為圓心,并與其漸近線相切的圓的標準方程是______

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線上一點到焦點的距離為3,則點的橫坐標是           .

查看答案和解析>>

同步練習冊答案