已知雙曲線的左右頂點分別是,點是雙曲線上異于點的任意一點。若直線的斜率之積等于2,則該雙曲線的離心率等于        

試題分析:利用斜率公式計算斜率,可得P的軌跡方程,即為雙曲線方程,從而可求雙曲線的離心率。設點P(x,y),則可知直線的斜率之積等于2,即為

故答案為
點評:本題考查雙曲線的幾何性質,考查學生分析解決問題的能力,屬于中檔題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1、F2是雙曲線的兩個焦點,P在雙曲線上,且滿足∠F1PF2=90°,則△PF1F2的面積是(    )
A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點是拋物線的準線與雙曲線的兩條漸近線所圍成的三角形平面區(qū)域內(含邊界)的任意一點,則的最大值為_    __.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的離心率為2,焦點與橢圓的焦點相同,求雙曲線的方程及焦點坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左焦點為F,直線x=m與橢圓相交于點A、B,當△FAB的周長最大時,△FAB的面積是   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線,上任意一點;
(1)求證:點到雙曲線的兩條漸近線的距離的乘積是一個常數(shù);
(2)設點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設拋物線)的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線軸上方的一個交點為.

(1)當時,求橢圓的方程;
(2)在(1)的條件下,直線經過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關系,并說明理由;
(3)是否存在實數(shù),使得的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓方程,點,A,P為橢圓上任意一點,則的取值范圍是              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線-=1的右焦點為,則該雙曲線的離心率等于(   )
   B.    C.   D.

查看答案和解析>>

同步練習冊答案