過雙曲線的右焦點作圓的切線(切點為),交軸于點.若為線段的中點,則雙曲線的離心率為
A.2B.C.D.
B

試題分析:因為,且 所以,所以   所以,即,所以.
點評:本題主要考查了雙曲線的簡單性質(zhì).解題的關(guān)鍵是利用圓的切線的性質(zhì)和數(shù)形結(jié)合的數(shù)學(xué)思想的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等邊中,分別是的中點,以為焦點且過的橢圓和雙曲線的離心率分別為,則下列關(guān)于的關(guān)系式不正確的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線與拋物線有一個公共的焦點,且兩曲線的一個交點為,若,則雙曲線的漸近線方程為.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點是拋物線的準(zhǔn)線與雙曲線的兩條漸近線所圍成的三角形平面區(qū)域內(nèi)(含邊界)的任意一點,則的最大值為_    __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,已知橢圓上的任意一點,滿足,過作垂直于橢圓長軸的弦長為3.

(1)求橢圓的方程;
(2)若過的直線交橢圓于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的離心率為2,焦點與橢圓的焦點相同,求雙曲線的方程及焦點坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左焦點為F,直線x=m與橢圓相交于點A、B,當(dāng)△FAB的周長最大時,△FAB的面積是   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)拋物線)的準(zhǔn)線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線軸上方的一個交點為.

(1)當(dāng)時,求橢圓的方程;
(2)在(1)的條件下,直線經(jīng)過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關(guān)系,并說明理由;
(3)是否存在實數(shù),使得的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,焦點到相應(yīng)準(zhǔn)線的距離為
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點,坐標(biāo)原點到直線的距離為,求面積的最大值。

查看答案和解析>>

同步練習(xí)冊答案