【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口的中點,分別落在線段上.已知米,米,記

(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;

(2)若,求此時管道的長度;

(3)當(dāng)取何值時,污水凈化效果最好?并求出此時管道的長度.

【答案】(1).(2) 米 (3)時,污水凈化效果最好,此時管道的長度為

【解析】

根據(jù)直角三角形表示,,即得結(jié)果,根據(jù)同角三角函數(shù)關(guān)系求得,即得結(jié)果,利用同角三角函數(shù)關(guān)系,將函數(shù)轉(zhuǎn)化為一元函數(shù),根據(jù)單調(diào)性得結(jié)果.

解:,,

由于,,

所以,所以.所以

當(dāng)時,,

,設(shè),則,

所以.由于,所以

由于上單調(diào)遞減,

所以當(dāng),即時,L取得最大值

答:當(dāng)時,污水凈化效果最好,此時管道的長度為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+bx+b) (b∈R)
(1)當(dāng)b=4時,求f(x)的極值;
(2)若f(x)在區(qū)間(0, )上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班名同學(xué)的數(shù)學(xué)小測成績的頻率分布表如圖所示,其中,且分數(shù)在的有人.

(1)求的值;

(2)若分數(shù)在的人數(shù)是分數(shù)在的人數(shù)的,求從不及格的人中任意選取3人,其中分數(shù)在50分以下的人數(shù)為,求的數(shù)學(xué)期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問72名不同性別的大學(xué)生在購買食物時是否看營養(yǎng)說明,得到如下列聯(lián)表:

總計

讀營養(yǎng)說明

16

28

44

不讀營養(yǎng)說明

20

8

28

總計

36

36

72

(1)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認為性別和是否看營養(yǎng)說明有關(guān)系呢?

(2)從被詢問的28名不讀營養(yǎng)說明的大學(xué)生中,隨機抽取2名學(xué)生,求抽到女生人數(shù)

的分布列及數(shù)學(xué)期望.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若時,有成立

1判斷上的單調(diào)性,并證明;

2解不等式:;

3對所有的恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中,若、、的三條邊長,則下列結(jié)論:①對于一切都有;②存在使、、不能構(gòu)成一個三角形的三邊長;③為鈍角三角形,存在,使,其中正確的個數(shù)為______

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn),M,N分別是棱AB,AD,A1B1 , A1D1的中點,點P,Q分別在棱DD1 , BB1上移動,且DP=BQ=λ(0<λ<2)

(1)當(dāng)λ=1時,證明:直線BC1∥平面EFPQ;
(2)是否存在λ,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對應(yīng)法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點,m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結(jié)論的序號:_____.

查看答案和解析>>

同步練習(xí)冊答案