【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn),M,N分別是棱AB,AD,A1B1 , A1D1的中點,點P,Q分別在棱DD1 , BB1上移動,且DP=BQ=λ(0<λ<2)

(1)當λ=1時,證明:直線BC1∥平面EFPQ;
(2)是否存在λ,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出λ的值;若不存在,說明理由.

【答案】
(1)證明:以D為原點,射線DA,DC,DD1分別為x,y,z軸的正半軸,建立坐標系,則B(2,2,0),C1(0,2,2),E(2,1,0),F(xiàn)(1,0,0),P(0,0,λ),

=(﹣2,0,2), =(﹣1,0,λ), =(1,1,0)

λ=1時, =(﹣2,0,2), =(﹣1,0,1),

=2 ,

∴BC1∥FP,

∵FP平面EFPQ,BC1平面EFPQ,

∴直線BC1∥平面EFPQ;


(2)解:設(shè)平面EFPQ的一個法向量為 =(x,y,z),則 ,

∴取 =(λ,﹣λ,1).

同理可得平面MNPQ的一個法向量為 =(λ﹣2,2﹣λ,1),

若存在λ,使面EFPQ與面PQMN所成的二面角為直二面角,則

=λ(λ﹣2)﹣λ(2﹣λ)+1=0,∴λ=1±

∴存在λ=1± ,使面EFPQ與面PQMN所成的二面角為直二面角.


【解析】(1)建立坐標系,求出 =2 ,可得BC1∥FP,利用線面平行的判定定理,可以證明直線BC1∥平面EFPQ;(2)求出平面EFPQ的一個法向量、平面MNPQ的一個法向量,利用面EFPQ與面PQMN所成的二面角為直二面角,建立方程,即可得出結(jié)論.
【考點精析】通過靈活運用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓 的離心率,且橢圓上一點到點的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè), 為拋物線 上一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由不等式組 確定的平面區(qū)域記為Ω1 , 不等式組 確定的平面區(qū)域記為Ω2 , 在Ω1中隨機取一點,則該點恰好在Ω2內(nèi)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口的中點,分別落在線段上.已知米,米,記

(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;

(2)若,求此時管道的長度;

(3)當取何值時,污水凈化效果最好?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:

對某城市一年(365天)的空氣質(zhì)量進行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間 ,,,,進行分組,得到頻率分布條形圖如圖.

(1)求圖中的值;

(2)空氣質(zhì)量狀況分別為輕微污染或輕度污染定為空氣質(zhì)量Ⅲ級,求一年中空氣質(zhì)量為Ⅲ級的天數(shù)

(3)小張到該城市出差一天,這天空氣質(zhì)量為優(yōu)良的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計劃在全國中學(xué)生田徑比賽期間,安排6位志愿者到4個比賽場地提供服務(wù),要求甲、乙兩個比賽場地各安排一個人,剩下兩個比賽場地各安排兩個人,其中的小李和小王不在一起,不同的安排方案共有( )

A. 168種 B. 156種 C. 172種 D. 180種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線上一個動點, 為圓上一個動點,那么點到點的距離與點到拋物線的準線距離之和的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對的邊分別為,設(shè)的面積,且.

(1)求角的大小;

(2)若,求周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,為棱的中點.

求證:(1)平面;

(2)平面平面.

查看答案和解析>>

同步練習(xí)冊答案