【題目】已知橢圓C1左右焦點為F1,F2直線(1xy0與該橢圓有一個公共點在y軸上,另一個公共點的坐標為(m,1).

1)求橢圓C的方程;

2)設(shè)P為橢圓C上任一點,過焦點F1F2的弦分別為PM,PN,設(shè)λ1λ2,求λ12的值.

【答案】1;(210

【解析】

(1)由直線過點,可得,又點,在橢圓上,可求得,的值,從而得出橢圓方程;

(2)設(shè)出,,,,,,在橢圓上,則有x02+3y02=6,根據(jù),,可求出的坐標,再把,代入,進而可求的值.

(1)∵直線(1)xy0y軸交點為(0,),

,

又∵直線(1)xy0與橢圓有公共點(m,1).

∴點(,1)在橢圓上,

,

a2=6,

∴橢圓C的方程為:;

(2)設(shè)P(x0,y0),M(x1,y1),N(x2,y2),

則有x02+3y02=6,

根據(jù)λ1λ2,

可得M(2,),N(2,),

M,N代入x02+3y02=6,

可得,

λ12=10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若函數(shù)有兩個零點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動更多人閱讀,聯(lián)合國教科文組織確定每年的4月23日為“世界讀書日”設(shè)立目的是希望居住在世界各地的人,無論你是年老還是年輕,無論你是貧窮還是富裕,都能享受閱讀的樂趣,都能尊重和感謝為人類文明做出過巨大貢獻的思想大師們,都能保護知識產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機調(diào)查了200名居民,經(jīng)統(tǒng)計這200人中通過電子閱讀與紙質(zhì)閱讀的人數(shù)之比為3:1,將這200人按年齡分組,其中統(tǒng)計通過電子閱讀的居民得到的頻率分布直方圖如圖所示,

(1)求a的值及通過電子閱讀的居民的平均年鹼;

(2)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中通過紙質(zhì)閱讀的中老年有30人,請完成下面2×2列聯(lián)表,并判斷是否有97.5%的把握認為閱讀方式與年齡有關(guān)?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為正三角形,且BCCD2CDBC,將△ABC沿BC翻折.

1)當AD2時,求證:平面ABD⊥平面BCD;

2)若點A的射影在△BCD內(nèi),且直線AB與平面ACD所成角為60°,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0),橢圓C上的點到焦點距離的最大值為9,最小值為1

1)求橢圓C的標準方程;

2)求橢圓C上的點到直線l4x5y+400的最小距離?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家物流公司都需要進行貨物中轉(zhuǎn),由于業(yè)務(wù)量擴大,現(xiàn)向社會招聘貨車司機,其日工資方案如下:甲公司,底薪80元,司機毎中轉(zhuǎn)一車貨物另計4元:乙公司無底薪,中轉(zhuǎn)40車貨物以內(nèi)(含40車)的部分司機每車計6元,超出40車的部分司機每車計7元.假設(shè)同一物流公司的司機一填中轉(zhuǎn)車數(shù)相同,現(xiàn)從這兩家公司各隨機選取一名貨車司機,并分別記錄其50天的中轉(zhuǎn)車數(shù),得到如下頻數(shù)表:

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

15

10

10

5

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

5

10

10

20

5

1)現(xiàn)從記錄甲公司的50天貨物中轉(zhuǎn)車數(shù)中隨機抽取3天的中轉(zhuǎn)車數(shù),求這3天中轉(zhuǎn)車數(shù)都不小于40的概率;

2)若將頻率視為概率,回答下列兩個問題:

①記乙公司貨車司機日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望EX);

②小王打算到甲、乙兩家物流公司中的一家應(yīng)聘,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為小王作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進行消防知識競賽.下圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按分組,得到的頻率分布直方圖.

1)請計算高一年級和高二年級成績小于60分的人數(shù);

2)完成下面列聯(lián)表,并回答:有多大的把握可以認為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?

成績小于60分人數(shù)

成績不小于60分人數(shù)

合計

高一

高二

合計

附:臨界值表及參考公式:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,過焦點且垂直于x軸的直線被橢圓截得的線段長為3

(1)求橢圓的方程;

(2)已知P為直角坐標平面內(nèi)一定點,動直線l:與橢圓交于A、B兩點,當直線PA與直線PB的斜率均存在時,若直線PA與PB的斜率之和為與t無關(guān)的常數(shù),求出所有滿足條件的定點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,DAC邊的中點,,.

1)求證:AB1/∥平面BDC1;

2)求異面直線AB1BC1所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案