【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面 垂直于,為棱上的點(diǎn),,.

(1)若為棱的中點(diǎn),求證://平面;

(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值;

(3)在第(2)問(wèn)條件下,設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求當(dāng)取最大值時(shí)點(diǎn)的位置.

【答案】(1)見(jiàn)解析;(2);(3)即點(diǎn)N在線段CD上且

【解析】

1)取線段SC的中點(diǎn)E,連接MEED.可證是平行四邊形,從而有,則可得線面平行;

2)以點(diǎn)A為坐標(biāo)原點(diǎn),建立分別以AD、ABAS所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,求出兩平面與平面的法向量,由法向量夾角的余弦值可得二面角的余弦值;

3)設(shè),其中,求出,由MN與平面所成角的正弦值為與平面的法向量夾角余弦值的絕對(duì)值可求得結(jié)論.

1)證明:取線段SC的中點(diǎn)E,連接ME,ED

中,ME為中位線,∴,

,∴,

∴四邊形AMED為平行四邊形.

平面SCD平面SCD,

平面SCD

2)解:如圖所示以點(diǎn)A為坐標(biāo)原點(diǎn),建立分別以AD、AB、AS所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,則,,,

由條件得M為線段SBB點(diǎn)的三等分點(diǎn).

于是,即,

設(shè)平面AMC的一個(gè)法向量為,則,

將坐標(biāo)代入并取,得

另外易知平面SAB的一個(gè)法向量為

所以平面AMC與平面SAB所成的銳二面角的余弦為

3)設(shè),其中

由于,所以

所以,

可知當(dāng),即時(shí)分母有最小值,此時(shí)有最大值,

此時(shí),,即點(diǎn)N在線段CD上且

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是不共面的三個(gè)向量,則能構(gòu)成一個(gè)基底的一組向量是( 。

A. 2,,+2 B. 2,,+2

C. ,2, D. ,+,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱柱的側(cè)棱垂直于底面,且底面是邊長(zhǎng)為2的正三角形,,點(diǎn)D,E,F分別是所在棱的中點(diǎn).

(1)在線段上找一點(diǎn)使得平面∥平面,給出點(diǎn)的位置并證明你的結(jié)論;

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)期著名的數(shù)學(xué)家劉徽對(duì)推導(dǎo)特殊數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了許多算法,展現(xiàn)了聰明才智.他在《九章算術(shù)》“盈不足”章的第19題的注文中給出了一個(gè)特殊數(shù)列的求和公式.這個(gè)題的大意是:一匹良馬和一匹駑馬由長(zhǎng)安出發(fā)至齊地,長(zhǎng)安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長(zhǎng)安迎駑馬,問(wèn)兩匹馬在第幾天相遇( )

A. 14天B. 15天C. 16天D. 17天

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義個(gè)正數(shù)、、、的“均倒數(shù)”.已知正項(xiàng)數(shù)列的前項(xiàng)的“均倒數(shù)”為.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)一切恒成立,試求實(shí)數(shù)的取值范圍;

3)令,問(wèn):是否存在正整數(shù)使得對(duì)一切恒成立,如存在,求出值,否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大氣污染是我國(guó)目前最突出的環(huán)境問(wèn)題之一,其中工廠廢氣是大氣污染的重大污染源之一。工廠廢氣未經(jīng)凈化處理排放至空氣中,除了對(duì)空氣質(zhì)量造成嚴(yán)重破壞,還會(huì)對(duì)人體的健康造成重大威脅。長(zhǎng)期生活在污染的空氣中,生活質(zhì)量及身體健康將急劇下降。某工廠因?yàn)槲廴締?wèn)題需改進(jìn)技術(shù),2019年初購(gòu)進(jìn)一臺(tái)環(huán)保新機(jī)器投入生產(chǎn),機(jī)器的成本價(jià)為36萬(wàn)元,第年該機(jī)器包括維修費(fèi)和機(jī)器護(hù)理費(fèi)用在內(nèi),每年另需投人費(fèi)用萬(wàn)元,購(gòu)進(jìn)該機(jī)器后每年盈利20萬(wàn)元.

(1)問(wèn)該機(jī)器投入生產(chǎn)第幾年,工廠開(kāi)始盈利(即總收入大于所有投人的費(fèi)用)?

2)由于機(jī)器使用年限越大維修等費(fèi)用越高,所以工廠決定當(dāng)年平均利潤(rùn)最大時(shí)將該機(jī)器以5萬(wàn)元低價(jià)處理,問(wèn)使用該機(jī)器幾年后工廠年平均利潤(rùn)最大?此時(shí)工廠獲得的總利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購(gòu)銷(xiāo)平臺(tái).已知經(jīng)銷(xiāo)某種商品的電商在任何一個(gè)銷(xiāo)售季度內(nèi),每售出噸該商品可獲利潤(rùn)萬(wàn)元,未售出的商品,每噸虧損萬(wàn)元.根據(jù)往年的銷(xiāo)售經(jīng)驗(yàn),得到一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷(xiāo)售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個(gè)銷(xiāo)售季度的市場(chǎng)需求量,(單位:萬(wàn)元)表示該電商下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該商品獲得的利潤(rùn).

1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

2)根據(jù)直方圖估計(jì)利潤(rùn)不少于57萬(wàn)元的概率;

3)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的平均數(shù)與中位數(shù)的大小(保留到小數(shù)點(diǎn)后一位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓上的一動(dòng)點(diǎn),點(diǎn),點(diǎn)在線段上,且滿(mǎn)足.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點(diǎn)分別為點(diǎn),,斜率為的動(dòng)直線交曲線兩點(diǎn),其中點(diǎn)在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在定義域上滿(mǎn)足恒成立.

(1)求實(shí)數(shù)的值;

(2)令上的最小值為,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案