【題目】在平面直角坐標(biāo)系中,是橢圓:上的點(diǎn),過點(diǎn)的直線的方程為.
(1)求橢圓的離心率;
(2)當(dāng)時(shí),
(i)設(shè)直線與軸、軸分別相交于,兩點(diǎn),求的最小值;
(ii)設(shè)橢圓的左、右焦點(diǎn)分別為,,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,求證:點(diǎn),,三點(diǎn)共線.
【答案】(1)(2)(i)(ii)證明見解析
【解析】
(1)由橢圓方程求出可得離心率;
(2)(i)求出直線與坐標(biāo)軸交點(diǎn)的坐標(biāo),可得出面積為,由在橢圓上,可得,由基本不等式可得的最大值,從而得面積最小值;
(ii)求出對(duì)稱點(diǎn)的坐標(biāo),驗(yàn)證三點(diǎn)共線.可分類和分別求解.
(1)依題,,
所以橢圓離心率為.
(2)依題意,令,由,得,則.
令,由,得,則.
則的面積.
因?yàn)辄c(diǎn)在上,所以.
因?yàn)?/span>,即,則.
所以.
當(dāng)且僅當(dāng),即,,面積的最小值為.
(3)由,解得.
①當(dāng)時(shí),,,此時(shí),.
因?yàn)?/span>,所以三點(diǎn),,共線.
當(dāng)時(shí),也滿足.
②當(dāng)時(shí),設(shè),,的中點(diǎn)為,則,代入直線的方程,得:
.
設(shè)直線的斜率為,則,
所以.
由,解得,.
所以.
當(dāng)點(diǎn)的橫坐標(biāo)與點(diǎn)的橫坐標(biāo)相等時(shí),把,代入中得,則,,三點(diǎn)共線.
當(dāng)點(diǎn)的橫坐標(biāo)與點(diǎn)的橫坐標(biāo)不相等時(shí),
直線的斜率為.由,.
所以直線的斜率為
.
因?yàn)?/span>,所以,,三點(diǎn)共線,
綜上所述,,三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)設(shè),判斷在上是否為有界函數(shù),若是,請(qǐng)說明理由,并寫出的所有上界的集合;若不是,也請(qǐng)說明理由;
(2)若函數(shù)在上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,對(duì)任意,都有;
(1)若,求證:數(shù)列是等差數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;
(2)若,求證:數(shù)列是等比數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;
(3)設(shè),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“互聯(lián)網(wǎng)+”是“智慧城市”的重要內(nèi)容,A市在智慧城市的建設(shè)中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費(fèi)WiFi為了解免費(fèi)WiFi在A市的使用情況,調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人):
經(jīng)常使用免費(fèi)WiFi | 偶爾或不用免費(fèi)WiFi | 合計(jì) | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有90%的把握認(rèn)為A市使用免費(fèi)WiFi的情況與年齡有關(guān);
(2)將頻率視為概率,現(xiàn)從該市45歲以上的市民中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次.記被抽取的3人中“偶爾或不用免費(fèi)WiFi”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,數(shù)學(xué)期望E(X)和方差D(X).附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,∥,,平面平面,且.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)已知點(diǎn)在棱上,且異面直線與所成角的余弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,,,側(cè)面底面,是等邊三角形,,點(diǎn)分別是棱的中點(diǎn) .
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大;
(Ⅲ)在線段上存在一點(diǎn),使平面,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生自主學(xué)習(xí)期間完成數(shù)學(xué)套卷的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表.
(1)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生完成套卷數(shù)之和為4的概率?
(2)若從完成套卷數(shù)不少于4套的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(3)試判斷男學(xué)生完成套卷數(shù)的方差與女學(xué)生完成套卷數(shù)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知定點(diǎn)、,動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的曲線為,直線與交于兩點(diǎn).
(1)寫出曲線的方程,并指出曲線的軌跡;
(2)當(dāng),求實(shí)數(shù)的取值范圍;
(3)證明:存在直線,滿足,并求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com