【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)設(shè),判斷在上是否為有界函數(shù),若是,請(qǐng)說(shuō)明理由,并寫(xiě)出的所有上界的集合;若不是,也請(qǐng)說(shuō)明理由;
(2)若函數(shù)在上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
【答案】(1)是,理由見(jiàn)解析,(2)
【解析】
(1)根據(jù)的單調(diào)性求得在區(qū)間上的取值范圍,由此得出,進(jìn)而判斷出在在上是有界函數(shù),并由此求得所有上屆的集合.
(2)根據(jù)的上界得到,令進(jìn)行換元、分離常數(shù),將問(wèn)題轉(zhuǎn)化為,然后利用導(dǎo)數(shù)求得在區(qū)間上,函數(shù)的最大值以及函數(shù)的最小值,由此求得實(shí)數(shù)的取值范圍.
(1),,則在上是增函數(shù),故,即,
故,所以是有界函數(shù).
所以,上界滿足,所有上界的集合是.
(2)由題意,對(duì)恒成立,
即,
令,則,原不等式變?yōu)?/span>,
故, 故,
令,當(dāng)時(shí),,即函數(shù)在區(qū)間上是增函數(shù),故.
令,當(dāng)時(shí),,即函數(shù)在區(qū)間上是減函數(shù),故.
綜上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的所有項(xiàng)都是不等于的正數(shù),的前項(xiàng)和為,已知點(diǎn)在直線上(其中常數(shù),且)數(shù)列,又.
(1)求證數(shù)列是等比數(shù)列;
(2)如果,求實(shí)數(shù)的值;
(3)若果存在使得點(diǎn)和都在直線在上,是否存在自然數(shù),當(dāng)()時(shí),恒成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記點(diǎn)到圖形上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)到圖形的距離,那么平面內(nèi)到定圓的距離與到定點(diǎn)的距離相等的點(diǎn)的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,稱(其中)為數(shù)列的前k項(xiàng)“波動(dòng)均值”.若對(duì)任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求的取值范圍;
(2)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;
(3)已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為整數(shù),前項(xiàng)的和為. 且對(duì)任意,都有, 試計(jì)算: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為函數(shù)(,為定義域)圖像上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),為點(diǎn)與點(diǎn)兩點(diǎn)間的距離.
(1)若,求的最大值與最小值;
(2)若,是否存在實(shí)數(shù),使得的最小值不小于2?若存在,請(qǐng)求出的取值范圍;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬(wàn)元)和銷量(萬(wàn)盒)的統(tǒng)計(jì)數(shù)據(jù)如下:
研發(fā)費(fèi)用(百萬(wàn)元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量(萬(wàn)盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);
(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對(duì)其進(jìn)行兩次檢測(cè),當(dāng)?shù)谝淮螜z測(cè)合格后,才能進(jìn)行第二次檢測(cè).第一次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,,第二次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,.兩次檢測(cè)過(guò)程相互獨(dú)立,設(shè)經(jīng)過(guò)兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.
附:(1)相關(guān)系數(shù)
(2),,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)作傾斜角為的直線交于兩點(diǎn),過(guò)作與平行的直線交于點(diǎn),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的函數(shù),如果存在常數(shù),對(duì)區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對(duì)差有界函數(shù)”。注:。
(1)證明函數(shù)在上是“絕對(duì)差有界函數(shù)”。
(2)證明函數(shù)不是上的“絕對(duì)差有界函數(shù)”。
(3)記集合存在常數(shù),對(duì)任意的,有成立,證明集合中的任意函數(shù)為“絕對(duì)差有界函數(shù)”,并判斷是否在集合中,如果在,請(qǐng)證明并求的最小值;如果不在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某甲籃球隊(duì)的12名隊(duì)員(含2名外援)中有5名主力隊(duì)員(含一名外援),主教練要從12名隊(duì)員中選5人首發(fā)上場(chǎng),則主力隊(duì)員不少于4人,且有一名外援上場(chǎng)的概率是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com