【題目】如圖,在圓柱中,A,BC,D是底面圓的四等分點(diǎn),O是圓心,A1A,B1BC1C與底面ABCD垂直,底面圓的直徑等于圓柱的高.

(Ⅰ)證明:BCAB1;

(Ⅱ)(。┣蠖娼A1 - BB1 - D的大;

(ⅱ)求異面直線(xiàn)AB1BD所成角的余弦值.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)(。 ;(ⅱ)

【解析】試題分析:(Ⅰ)由已知條件先證明BC⊥平面A1B1BA,又BA1平面A1B1BA,所以BCAB1

(Ⅱ)(。┯蓤A柱性質(zhì)知CBCD、CC1兩兩垂直.以C為原點(diǎn),以、x軸、y軸、z軸正方向建系求解即可;

(ⅱ)通過(guò)求向量 的夾角,可得異面直線(xiàn)AB1BD所成角的余弦值.

試題解析:(Ⅰ)證明:因?yàn)?/span>B1B⊥平面ABCD,且BC平面ABCD,所以BCB1B,又因?yàn)樵诘酌鎴AO中,ABBCABB1B = B,所以BC⊥平面A1B1BA,又因?yàn)?/span>BA1平面A1B1BA,所以BCAB1

(Ⅱ)(。┯蓤A柱性質(zhì)知CB、CD、CC1兩兩垂直.以C為原點(diǎn),以、x軸、y軸、z軸正方向建立空間直角坐標(biāo)系,不妨設(shè)圓柱的高為2

, .所以平面A1B1B的一個(gè)法向量是

平面BB1D的一個(gè)法向量是

所以

由圖知二面角A1 - BB1 - D是銳二面角,所以它的大小是

(ⅱ)由題意得,

所以,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有10名員工,他們某年的收入如下表:

員工編號(hào)

1

2

3

4

5

6

7

8

9

10

年薪(萬(wàn)元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);

(2)從該單位中任取2人,此2人中年薪收入高于7萬(wàn)的人數(shù)記為,求的分布列和期望;

(3)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬(wàn)元,5.5萬(wàn)元,6萬(wàn)元,8.5萬(wàn)元,預(yù)測(cè)該員工第五年的年薪為多少?

附:線(xiàn)性回歸方程中系數(shù)計(jì)算公式分別為:

,其中為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}. (Ⅰ)當(dāng)a=2時(shí),求集合A∩B;
(Ⅱ)若A∩(UB)=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】格紙中每個(gè)正方形的邊長(zhǎng)為1,粗線(xiàn)部分是一個(gè)幾何體的三視圖,則該幾何體最長(zhǎng)棱的棱長(zhǎng)是

A. 3 B. 6 C. D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2

(Ⅰ)求曲線(xiàn)C1C2的直角坐標(biāo)方程,并分別指出其曲線(xiàn)類(lèi)型;

(Ⅱ)試判斷:曲線(xiàn)C1C2是否有公共點(diǎn)?如果有,說(shuō)明公共點(diǎn)的個(gè)數(shù);如果沒(méi)有,請(qǐng)說(shuō)明理由;

(Ⅲ)設(shè)是曲線(xiàn)C1上任意一點(diǎn),請(qǐng)直接寫(xiě)出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)G為△ABC的重心,過(guò)G作直線(xiàn)l分別交線(xiàn)段AB,AC(不與端點(diǎn)重合)于P,Q.若 ,
(1)求 + 的值;
(2)求λμ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),,線(xiàn)段的垂直平分線(xiàn)與直線(xiàn)交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)若直線(xiàn)與點(diǎn)的軌跡相切,且與圓相交于點(diǎn),求直線(xiàn)和三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ) 當(dāng)a=-1時(shí),求證: ;

(Ⅱ) 對(duì)任意,存在,使成立,求a的取值范圍.(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中,且.

(1)值;

(2),為自然對(duì)數(shù)的底數(shù),求證:當(dāng)時(shí),;

(3)若函數(shù)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案