【題目】設(shè)G為△ABC的重心,過G作直線l分別交線段AB,AC(不與端點重合)于P,Q.若 =λ , =μ
(1)求 + 的值;
(2)求λμ的取值范圍.
【答案】
(1)解:連結(jié)AG并延長交BC于M,則M是BC的中點,則 , .
又 , ,
∴ = , =( ) + .
∵P,G,Q三點共線,故存在實數(shù)t,使 =t ,即( ) + = .
∴ ,兩式相除消去t得1﹣3λ=﹣ ,即 .
(2)解:∵1﹣3λ=﹣ ,∴ ,
∵λ,μ∈(0,1),∴ ,解得 .∴ .
∴λμ= = .
∴當 時,λμ取得最小值 ,當 或2時,λμ取得最大值 .
∴λμ的取值范圍是[ , ).
【解析】(1)使用 表示出 ,根據(jù)P,Q,G三點共線得出λ,μ的關(guān)系;(2)用λ表示出μ,令λ,μ∈(0,1)得出λ的范圍,則λμ可表示為關(guān)于λ的函數(shù),求出該函數(shù)的最值即可.
【考點精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識,掌握如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1<x≤5},集合B={ >0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)= x·ex, , ,若對任意的,都有成立,則實數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到理科題的概率;
(2)該考生答對理科題的概率均為,若每題答對得10分,否則得零分,現(xiàn)該生抽到3道理科題,求其所得總分的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓柱中,A,B,C,D是底面圓的四等分點,O是圓心,A1A,B1B,C1C與底面ABCD垂直,底面圓的直徑等于圓柱的高.
(Ⅰ)證明:BC⊥AB1;
(Ⅱ)(。┣蠖娼A1 - BB1 - D的大小;
(ⅱ)求異面直線AB1和BD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)存在兩個極值點.
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)設(shè)和分別是的兩個極值點且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2: .
(Ⅰ)求曲線C1和C2的直角坐標方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;
(Ⅲ)設(shè)是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點P(1,2),設(shè)直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin(θ+)= ,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)求直線l的普通方程;
(2)若P是曲線C上的動點,求點P到直線l的最大距離及點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com