【題目】有下列說法:

①函數(shù)ycos(2x)的最小正周期是π;

②終邊在y軸上的角的集合是{α|αkZ};

③在同一直角坐標(biāo)系中,函數(shù)ysinx的圖象和函數(shù)yx的圖象有三個(gè)公共點(diǎn);

④函數(shù)ysin(x)[0,π]上是增函數(shù).其中,正確的說法是________.(填序號(hào))

【答案】①④

【解析】

對(duì)于①中,根據(jù)余弦型函數(shù)的性質(zhì),可判定是正確的;對(duì)于②中,由終邊相同角的表示,可判定是不正確的;對(duì)于③中,可得到函數(shù)只有一個(gè)公共點(diǎn),所以不正確;

對(duì)于④中,化簡函數(shù),根據(jù)余弦函數(shù)的性質(zhì),可判定是正確的.

對(duì)于①中,根據(jù)余弦型函數(shù)的性質(zhì),可得函數(shù)的最小正周期為,所以是正確的;

對(duì)于②中,由終邊相同角的表示,可得終邊在軸上的角的可表示,所以是不正確的;

對(duì)于③中,設(shè)函數(shù),則,函數(shù)單調(diào)遞增,又由,所以函數(shù)只有一個(gè)公共點(diǎn),所以不正確;

對(duì)于④中,函數(shù),根據(jù)余弦函數(shù)的性質(zhì),可得函數(shù)在區(qū)間單調(diào)遞減,所以函數(shù)在區(qū)間單調(diào)遞增,所以是正確的.

綜上可知,①④是正確的.

故答案為:①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)定點(diǎn), 動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線.

1)求曲線的軌跡方程;

2)若是直線上的動(dòng)點(diǎn),過作曲線的兩條切線QM、QN,切點(diǎn)為、,探究:直線是否過定點(diǎn),若存在定點(diǎn)請寫出坐標(biāo),若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動(dòng),記滾動(dòng)過程中頂點(diǎn)A的橫、縱坐標(biāo)分別為,且在映射作用下的象,則下列說法中:

映射的值域是

映射不是一個(gè)函數(shù);

映射是函數(shù),且是偶函數(shù);

映射是函數(shù),且單增區(qū)間為,

其中正確說法的序號(hào)是___________.

說明:“正三角形ABC沿x軸滾動(dòng)包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)C落在x軸上時(shí),再以頂點(diǎn)C為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形ABC可以沿x軸負(fù)方向滾動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國自主研發(fā)的長征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進(jìn)劑的質(zhì)量為,去除推進(jìn)劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動(dòng)機(jī)噴流相對(duì)火箭的速度,假設(shè),,是以為底的自然對(duì)數(shù),,.

1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時(shí),求的值(精確到小數(shù)點(diǎn)后面1位).

2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請問的最小值為多少(精確到小數(shù)點(diǎn)后面1位)?由此指出其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)f(x)的定義域,判斷并證明函數(shù)f(x)的奇偶性;

(Ⅱ)是否存在這樣的實(shí)數(shù)k,使f(k-x2)+f(2k-x4)≥0對(duì)一切恒成立,若存在,試求出k的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】哈師大附中高三學(xué)年統(tǒng)計(jì)甲、乙兩個(gè)班級(jí)一模數(shù)學(xué)分?jǐn)?shù)(滿分150分),每個(gè)班級(jí)20名同學(xué),現(xiàn)有甲、乙兩班本次考試數(shù)學(xué)分?jǐn)?shù)如下列莖葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩班同學(xué)數(shù)學(xué)分?jǐn)?shù)的中位數(shù),并將乙班同學(xué)的分?jǐn)?shù)的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較在一?荚囍,甲、乙兩班同學(xué)數(shù)學(xué)分?jǐn)?shù)的平均水平和分?jǐn)?shù)的分散程度(不要求計(jì)算出具體值,給出結(jié)論即可)

(Ⅲ)若規(guī)定分?jǐn)?shù)在的成績?yōu)榱己,分(jǐn)?shù)在的成績?yōu)閮?yōu)秀,現(xiàn)從甲、乙兩班成績?yōu)閮?yōu)秀的同學(xué)中,按照各班成績?yōu)閮?yōu)秀的同學(xué)人數(shù)占兩班總的優(yōu)秀人數(shù)的比例分層抽樣,共選出12位同學(xué)參加數(shù)學(xué)提優(yōu)培訓(xùn),求這12位同學(xué)中恰含甲、乙兩班所有140分以上的同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新個(gè)稅法于2019年1月1日進(jìn)行實(shí)施.為了調(diào)查國企員工對(duì)新個(gè)稅法的滿意程度,研究人員在地各個(gè)國企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.

(1)求的值并估計(jì)被調(diào)查的員工的滿意程度的中位數(shù);(計(jì)算結(jié)果保留兩位小數(shù))

(2)若按照分層抽樣從,中隨機(jī)抽取8人,再從這8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對(duì)分類討論求得函數(shù)在不同取值時(shí)的最大值.

試題解析】

(Ⅰ)

設(shè) ,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵,

∴當(dāng)時(shí), ,當(dāng)時(shí), ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

設(shè),

.

∵當(dāng)時(shí), ,∴上單調(diào)遞增.

又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .

①當(dāng)時(shí), ,即,這時(shí), ;

②當(dāng)時(shí), ,即,這時(shí), .

綜上, 上的最大值為:當(dāng)時(shí), ;

當(dāng)時(shí), .

[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案