【題目】已知函數(shù).

(1)若時,函數(shù)的圖像恒在直線上方,求實數(shù)的取值范圍;

(2)證明:當時,.

【答案】(1);(2)證明見解析.

【解析】

1)先由題意得到當時,恒成立,即恒成立,再令,用導函數(shù)方法研究其單調(diào)性,得到其最值,即可得出結(jié)果;

(2)根據(jù)數(shù)學歸納法的一般步驟,結(jié)合(1)的結(jié)果,即可證明結(jié)論成立.

(1)當時,函數(shù)的圖像恒在直線上方,

等價于當時,恒成立,

恒成立,

,,則

時,,故上遞增,

時,,故上遞減,

在區(qū)間上的極小值,僅有個極值點故為最小值,

時,

所以實數(shù)的取值范圍是 ;

(2)證明:

①當時,由,知成立;

②假設當時命題成立,即

那么,當時,

下面利用分析法證明:

要證上式成立,只需證:

只需證:

,只需證:,

只需證:,

由(1)知當時,恒成立.

所以,當時,也成立,

由①②可知,原不等式成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為也為拋物線的焦點,點在第一象限的交點,且.

(I)求橢圓的方程;

(II)延長,交橢圓于點,交拋物線于點,求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.

(1)求曲線C1的普通方程和C2的直角坐標方程;

(2)設M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線交于不同兩點分別過點、點作拋物線的切線,所得的兩條切線相交于點.

(Ⅰ)求證為定值:

(Ⅱ)求的面積的最小值及此時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù),為自然對數(shù)的底數(shù))的圖象在點處的切線與該函數(shù)的圖象恰好有三個公共點,求實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為數(shù)列的前項和.任意正整數(shù),均有為遞增數(shù)列

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線處的切線方程為.

(1)求的值;

(2)求證:時,;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”是手機推出的多款健康運動軟件中的一款,某學校140名老師均在微信好友群中參與了“微信運動”,對運動10000步或以上的老師授予“運動達人”稱號,低于10000步稱為“參與者”,為了解老師們運動情況,選取了老師們在4月28日的運動數(shù)據(jù)進行分析,統(tǒng)計結(jié)果如下:

運動達人

參與者

合計

男教師

60

20

80

女教師

40

20

60

合計

100

40

140

(1)根據(jù)上表說明,能否在犯錯誤概率不超過0.05的前提下認為獲得“運動達人”稱號與性別有關?

(2)從具有“運動達人”稱號的教師中,采用按性別分層抽樣的方法選取10人參加全國第四屆“萬步有約”全國健走激勵大賽某賽區(qū)的活動,若從選取的10人中隨機抽取3人作為代表參加開幕式,設抽取的3人中女教師人數(shù)為,寫出的分布列并求出數(shù)學期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的各項為正數(shù),且.

(1)求的通項公式;

(2)設,求證數(shù)列的前項和<2.

查看答案和解析>>

同步練習冊答案