【題目】已知等比數(shù)列的各項為正數(shù),且.

(1)求的通項公式;

(2)設,求證數(shù)列的前項和<2.

【答案】(1)(2)見解析

【解析】試題分析:(1)先根據(jù)條件列關(guān)于首項與公比的方程組,解出首項與公比,再代入等比數(shù)列通項公式即可,(2)先根據(jù)對數(shù)性質(zhì)化簡得,再根據(jù)裂項相消法求數(shù)列的前項和,最后根據(jù)n取值范圍證不等式.

試題解析:(1)設數(shù)列N的公比為q,

∵9a32=a2a6,9a22q2=a2a2q4,解得q2=9.

q>0,q=3,

∵a3=2a2+9,9a1=6a1+9,解得a1=3,

(2)a1a2…an=31+2+3+…+n=3,

∴bn=log3a1+log3a2+…+log3an=log3(a1a2…an)=,

<2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2018河南豫南九校高三下學期第一次聯(lián)考設函數(shù)

I)當時, 恒成立,求的范圍;

II)若處的切線為,且方程恰有兩解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018廣東省深中、華附、省實、廣雅四校聯(lián)考已知橢圓的離心率為,圓軸交于點 為橢圓上的動點, , 面積最大值為

I求圓與橢圓的方程;

II的切線交橢圓于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.

(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知A、BC是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;

(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.

(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MNx軸、y軸上的截距分別為m、n,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講設函數(shù)

(1)當時,解不等式:;

(2)若關(guān)于x的不等式fx)≤4的解集為[﹣1,7],且兩正數(shù)st滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)在點處的切線方程為.

(Ⅰ)求實數(shù)的值;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調(diào)查了40個用戶,得到用戶的滿意度評分如下:

用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機抽到的評分數(shù)據(jù)為92.

(1)請你列出抽到的10個樣本的評分數(shù)據(jù);

(2)計算所抽到的10個樣本的均值和方差;

(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”.試應用樣本估計總體的思想,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?(精確到)

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,直線AMBM相交于點M,且直線AM的斜率與直線BM的斜率的差是,則點M的軌跡C的方程是___________.若點為軌跡C的焦點,是直線上的一點,是直線與軌跡的一個交點,且,則_____

查看答案和解析>>

同步練習冊答案