【題目】如圖,已知拋物線焦點(diǎn)為,直線經(jīng)過點(diǎn)且與拋物線相交于,兩點(diǎn)

(Ⅰ)若線段的中點(diǎn)在直線上,求直線的方程;

(Ⅱ)若線段,求直線的方程.

【答案】(Ⅰ);(Ⅱ)

【解析】

試題(1)設(shè)直線l的斜率為k,A(x1,y1),B(x2,y2),AB的中點(diǎn)M(x0,y0),由點(diǎn)差法,可得2y0k=4,又,所以。(2)設(shè)直線l的方程為xmy+1,與拋物線聯(lián)立組方程組,由弦長(zhǎng)公式與志達(dá)定理,可求得參數(shù)m的值.

試題解析:(1)由已知得拋物線的焦點(diǎn)為F(1,0).因?yàn)榫段AB的中點(diǎn)在直線y=2上,所以直線l的斜率存在,設(shè)直線l的斜率為k,A(x1,y1),B(x2,y2),AB的中點(diǎn)M(x0y0),

(y1y2)(y1y2)=4(x1x2),所以2y0k=4.

y0=2,所以k=1,故直線l的方程是yx-1.

(2)設(shè)直線l的方程為xmy+1,與拋物線方程聯(lián)立得消元得y2-4my-4=0,所以y1y2=4m,y1y2=-4,Δ=16(m2+1)>0.

|AB|=|y1y2|=·

·=4(m2+1).

所以4(m2+1)=20,解得m=±2,

所以直線l的方程是x=±2y+1,

x±2y-1=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)和到直線的距離之比為,設(shè)動(dòng)點(diǎn)的軌跡為曲線,過點(diǎn)作垂直于軸的直線與曲線相交于兩點(diǎn),直線與曲線交于兩點(diǎn),與相交于一點(diǎn)(交點(diǎn)位于線段上,且與不重合).

(1)求曲線的方程;

(2)當(dāng)直線與圓相切時(shí),四邊形的面積是否有最大值?若有,求出其最大值及對(duì)應(yīng)的直線的方程;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),

(1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(2)已知,,若對(duì)任意都成立,求的最大值;

(3)設(shè),若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,點(diǎn)的中點(diǎn).

(1)證明:;

(2)若點(diǎn)為線段的中點(diǎn),平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的角所對(duì)的邊份別為,且

1求角的大小;

2,求的周長(zhǎng)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期屮考試后,分別從兩個(gè)班級(jí)屮各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績(jī)優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

p>成績(jī)不優(yōu)良

總計(jì)

附: .

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采川分層扣樣的方法扣取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,不正確的是(

A.中,若,則

B.在銳角中,不等式恒成立

C.中,若,,則必是等邊三角形

D.中,若,則必是等腰三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案