14.定義運(yùn)算?,a?b=S的運(yùn)算原理如偽代碼所示,則式子5?3+2?4=32.

分析 通過程序框圖判斷出S=a?b的解析式,求出5?3+2?4的值.

解答 解:有程序可知S=a?b=$\left\{\begin{array}{l}{a×(b+1)}&{a>b}\\{b×(a+1)}&{a≤b}\end{array}\right.$,
∴5?3+2?4=5×(3+1)+4×(2+1)=32.
故答案為:32.

點(diǎn)評 新定義題是近幾年?嫉念}型,要重視.解決新定義題關(guān)鍵是理解題中給的新定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=|2x-1|+x+3,若f(x)≥5,則x的取值范圍是{x|x≥1,或x≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a>b>0,且a+b=2,則$\frac{2}{a+3b}+\frac{1}{a-b}$的最小值為$\frac{3+2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將函數(shù)y=sin2x的圖象向左平移φ(φ>0)個單位,若所得的圖象過點(diǎn)($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),則φ的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.以下四個命題中是真命題的有①②(填序號).
①命題“若xy=1,則x,y互為倒數(shù)”的逆命題;
②命題“面積相等的兩個三角形全等”的否命題;
③命題“若m≤1,則0.005×20×2+0.0025×20=0.25有實(shí)根”的逆否命題;
④命題“若A∩B=B,則A⊆B”的逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.抽取某種型號的車床生產(chǎn)的10個零件,編號為A1,A2,…,A10,測量其直徑(單位:cm),得到下面數(shù)據(jù):
編號A1A2A3A4A5A6A7A8A9A10
直徑1.511.491.491.511.491.481.471.531.521.47
其中直徑在區(qū)間[1.49,1.51]內(nèi)的零件為一等品.
(1)從上述10個零件中,隨機(jī)抽取一個,求這個零件為一等品的概率;
(2)從一等品零件中,隨機(jī)抽取2個.
①用零件的編號列出所有可能的抽取結(jié)果;
②求這2個零件直徑相等的概率;
(3)若甲、乙分別從一等品中各取一個,求甲取到零件的直徑大于乙取到零件的直徑的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列四種說法:
①函數(shù)y=$\frac{{x}^{2}-x+4}{x-1}(x>1)$的最小值為5;
②等差數(shù)列{an}中,a1,a3,a4成等比數(shù)列,則公比為$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,則$\frac{2}{a}+\frac{3}$的最小值為5+2$\sqrt{6}$;
④在平面直角坐標(biāo)系xOy中,已知平面區(qū)域A={(x,y)|x+y≤1,x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積是1.
其中正確的命題為①③④(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求滿足$\frac{1}{2}$<sinθ≤$\frac{\sqrt{3}}{2}$的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax2+bx+c(a>0),對于任意的x1,x2(x1≠x2),則$f(\frac{{{x_1}+{x_2}}}{2})$與$\frac{{f({x_1})+f({x_2})}}{2}$的大小關(guān)系是( 。
A.$f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$B.$f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$
C.$f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$D.無法確定

查看答案和解析>>

同步練習(xí)冊答案