5.已知a>b>0,且a+b=2,則$\frac{2}{a+3b}+\frac{1}{a-b}$的最小值為$\frac{3+2\sqrt{2}}{4}$.

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵(a+3b)+(a-b)=2(a+b)=4,
∴$\frac{1}{4}$[(a+3b)+(a-b)]=1,
∴$\frac{2}{a+3b}+\frac{1}{a-b}$
=$\frac{1}{4}$($\frac{2}{a+3b}+\frac{1}{a-b}$)[(a+3b)+(a-b)]
=$\frac{1}{4}$[2+$\frac{2(a-b)}{a+3b}$+$\frac{a+3b}{a-b}$+1]
≥$\frac{1}{4}$[3+2$\sqrt{\frac{2(a-b)(a+3b)}{(a+3b)(a-b)}}$]
=$\frac{3+2\sqrt{2}}{4}$,
故答案為:$\frac{3+2\sqrt{2}}{4}$.

點(diǎn)評 本題考查了“乘1法”與基本不等式的性質(zhì),考查了變形能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若x≥1,a=($\frac{1}{3}$)${\;}^{{x}^{2}+1}$,b=($\frac{1}{3}$)x+1,c=($\frac{1}{3}$)2x,則下列關(guān)系中正確的是( 。
A.lga≥lgb≥1gcB.lgb≥lgc≥lgaC.lgb≥lga≥lgcD.1gc≥1ga≥lgb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$f(x)=\frac{4x-6}{x-1}$的定義域和值域都是[2,b](b>2),則實(shí)數(shù)b的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出四個命題:
①平行于同一平面的兩個不重合的平面平行;
②平行于同一直線的兩個不重合的平面平行;
③垂直于同一平面的兩個不重合的平面平行;
④垂直于同一直線的兩個不重合的平面平行;
其中真命題的序號是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示程序框圖中,輸出S=( 。
A.-1B.0C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)?shù)列{an}滿足an+2=2an+1-an,且a2014,a2016是函數(shù)f(x)=$\frac{1}{3}{x^3}-4{x^2}$+6x-1的極值點(diǎn),則log2(a2000+a2012+a2018+a2030)的值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.?dāng)?shù)據(jù)10,6,8,5,6的方差s2=$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義運(yùn)算?,a?b=S的運(yùn)算原理如偽代碼所示,則式子5?3+2?4=32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z=(x-1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為( 。
A.$\frac{3}{4}+\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{1}{2}-\frac{1}{π}$D.$\frac{1}{2}+\frac{1}{π}$

查看答案和解析>>

同步練習(xí)冊答案