【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,,是的中點.
(Ⅰ)求證:平面;
(II)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
【答案】見解析
【解析】(Ⅰ)連結BD,因為四邊形是菱形,,是的中點,
所以, …………2分
因為四邊形是矩形,平面平面且交線為,
所以平面,又平面,所以,……………4分
又,所以平面.……………………6分
(Ⅱ)由,可得,
因為四邊形是矩形,平面平面且交線為,,
所以平面,以為原點,為軸建立如圖所示的空間直角坐標系,則,,,,
設,則,,
因為平面,平面的一個法向量為,……8分
設平面的法向量為,,即,
取,可得,……10分
假設在線段上存在點,使二面角的大小為,
則,
所以點在線段上,符合題意的點存在,此時. …………12分
【命題意圖】本題考查平面和平面垂直的性質定理、直線和平面垂直的判定定理、二面角等基礎知識,意在考查空間想象能力和運算求解能力.
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上的奇函數(shù),且當x≥0時, ,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,則實數(shù)t的取值范圍是. .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),記函數(shù)f(x)=a + + 的最大值為g(a).
(1)設t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足g(a)=g( )的所有實數(shù)a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求的普通方程和的傾斜角;
(2)設點, 和交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足;數(shù)列的前項和為,且滿足, , .
(1)求數(shù)列、的通項公式;
(2)是否存在正整數(shù),使得恰為數(shù)列中的一項?若存在,求所有滿足要求的;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關于x的方程f(x)=k有3個實根,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為(0,+∞),且對一切x>0,y>0都有,當時,有
(1)求f(1)的值;
(2)判斷f(x)的單調性并加以證明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線經(jīng)過點傾斜角為.(10分).
(1)寫出直線的參數(shù)方程
(2)求直線與直線的交點到點的距離
(3)設與圓 相交于兩點,求點到兩點的距離的和與積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com