【題目】函數f(x)的定義域為(0,+∞),且對一切x>0,y>0都有,當時,有
(1)求f(1)的值;
(2)判斷f(x)的單調性并加以證明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
科目:高中數學 來源: 題型:
【題目】某同學在研究函數f(x)= ﹣1(x∈R)時,得出了下面4個結論:①等式f(﹣x)=f(x)在x∈R時恒成立;②函數f(x)在x∈R上的值域為(﹣1,1];③曲線y=f(x)與g(x)=2x﹣2僅有一個公共點;④若f(x)= ﹣1在區(qū)間[a,b](a,b為整數)上的值域是[0,1],則滿足條件的整數數對(a,b)共有5對.其中正確結論的序號有(請將你認為正確的結論的序號都填上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,,是的中點.
(Ⅰ)求證:平面;
(II)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的兩頂點坐標A(﹣1,0),B(1,0),圓E是△ABC的內切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=1(從圓外一點到圓的兩條切線段長相等),動點C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設直線BC與曲線M的另一交點為D,當點A在以線段CD為直徑的圓上時,求直線BC的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,,,,是上的點.
(Ⅰ)求證:平面平面;
(Ⅱ)若是的中點,且二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等比數列,a1=1,a6=243.Sn為等差數列{bn}的前n項和,b1=1,S5=25.
(1)求{an}和{bn}的通項公式;
(2)設Tn=a1b1+a2b2+…+anbn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}中,已知a1=2,a4=16.
(1)求數列{an}的通項公式an;
(2)若a3 , a5分別是等差數列{bn}的第4項和第16項,求數列{bn}的通項公式及前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠對新研發(fā)的一種產品進行試銷,得到如下數據表:
(1)根據上表求出回歸直線方程,并預測當單價定為8.3元時的銷量;
(2)如果該工廠每件產品的成本為5.5元,利用所求的回歸方程,要使得利潤最大,單價應該定為多少?
附:線性回歸方程中斜率和截距最小二乘估計計算公式:
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com