【題目】某學(xué)校高三年級有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130)[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機抽取2人,求兩人恰好為一男一女的概率;

2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為數(shù)學(xué)尖子生,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為數(shù)學(xué)尖子生與性別有關(guān)?

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

,

【答案】(1;(2)有90%的把握認(rèn)為數(shù)學(xué)尖子生與性別有關(guān)

【解析】試題分析:(1)先利用分層抽樣的得到男生男生和女生的人數(shù),再列舉出基本事件,利用古典概型的概率公式進(jìn)行求解;(2)先利用頻率分布直方圖得到有關(guān)數(shù)據(jù),列出列聯(lián)表,利用公式求值,再結(jié)合臨界值表作出判斷.

試題解析:(1)解:由已知得,抽取的100名學(xué)生中,男生60名,女生40

分?jǐn)?shù)小于等于110分的學(xué)生中,

60×0.05 = 3(),記為A1,A2,A3;女生有40×0.05 =" 2" (),記為B1,B2

從中隨機抽取2名學(xué)生,所有的可能結(jié)果共有10種,它們是:(A1,A2),(A1,A3),

(A2A3),(A1,B1)(A1,B2),(A2,B1)(A2,B2),(A3,B1),(A3,B2),(B1,B2),

其中,兩名學(xué)生恰好為一男一女的可能結(jié)果共有6種,它們是:(A1B1)(A1,B2),

(A2,B1)(A2,B2)(A3,B1),(A3,B2),

故所求的概率

(2)解:由頻率分布直方圖可知,

在抽取的100名學(xué)生中,男生60×0.25 = 15(),女生40×0.375 = 15()

據(jù)此可得2×2列聯(lián)表如下:


數(shù)學(xué)尖子生

非數(shù)學(xué)尖子生

合計

男生

15

45

60

女生

15

25

40

合計

30

70

100

所以得因為1.79 < 2.706.

所以沒有90%的把握認(rèn)為數(shù)學(xué)尖子生與性別有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù) 的定義域;
(2)若存在a∈R,對任意 ,總存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn是等差數(shù)列{an}的前n項和,且a2=2,S5=15.
(1)求通項公式an;
(2)若數(shù)列{bn}滿足bn=2an﹣an , 求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)f(x)的圖象與x軸交于(﹣2,0),(4,0)兩點,且頂點為(1,﹣ ).
(1)求f(x)的函數(shù)解析式;
(2)指出圖象的開口方向、對稱軸和頂點坐標(biāo);
(3)分析函數(shù)的單調(diào)性,求函數(shù)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】
(1)確定函數(shù)f(x)的解析式;
(2)當(dāng)x∈(﹣1,1)時判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)解不等式f(2x﹣1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為(
A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個函數(shù):
①y=3﹣x;②y=2x1(x>0);③y=x2+2x﹣10,;④
其中定義域與值域相同的函數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條巡邏船由南向北行駛,在處測得山頂在北偏東方向上,勻速向北航行分鐘到達(dá)處,測得山頂位于北偏東方向上,此時測得山頂的仰角,若山高為千米,

(1)船的航行速度是每小時多少千米?

(2)若該船繼續(xù)航行分鐘到達(dá)處,問此時山頂位于處的南偏東什么方向?

查看答案和解析>>

同步練習(xí)冊答案