【題目】如圖,已知側(cè)棱垂直于底面的四棱柱中, ,

(1)若是線段上的點(diǎn)且滿足,求證:平面平面;

(2)求二面角的平面角的余弦值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:

(1)利用題意建立空間直角坐標(biāo)系,證得 平面.即可得平面平面 ;

(2)由題意可知: .即二面角的平面角的余弦值為.

試題解析:

解:(1) 解法(一): , ,

, (沒(méi)有這一步扣一分)

為原點(diǎn), 軸, 軸, 軸,建立空間直角坐標(biāo)系.

設(shè)的中點(diǎn),連接.

平面, .

的中點(diǎn), .

, ,

,.

, .

(證得也行)

相交于, ⊥平面.

在平面內(nèi), 平面⊥平面

(2) 解法一: (若第1問(wèn)已經(jīng)建系)

, ⊥平面, 是平面的一個(gè)法向量.

, ,

設(shè)平面的法向量是,則, ,

,得. 平面的法量.

.

由圖可知二面角的平面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),設(shè)直線與曲線交于, 兩點(diǎn).

(Ⅰ)求線段的長(zhǎng);

(Ⅱ)已知點(diǎn)在曲線上運(yùn)動(dòng),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo)及的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中, , . ,且平面, ,點(diǎn)上任意一點(diǎn).

(1)求證:

(2)點(diǎn)在線段上運(yùn)動(dòng)(包括兩端點(diǎn)),若平面與平面所成的銳二面角為60°,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓關(guān)于直線對(duì)稱,圓心在第二象限,半徑為

(Ⅰ)求圓的方程.

(Ⅱ)是否存在直線與圓相切,且在軸、軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過(guò)程);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.在(0, )內(nèi),sinx>cosx
B.函數(shù)y=2sin(x+ )的圖象的一條對(duì)稱軸是x= π
C.函數(shù)y= 的最大值為π
D.函數(shù)y=sin2x的圖象可以由函數(shù)y=sin(2x﹣ )的圖象向右平移 個(gè)單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=80,b=100,A= ,則此三角形是(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.銳角或鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角△ABC的面積等于3 ,且AB=3,AC=4.
(1)求sin( +A)的值;
(2)求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù), ),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(Ⅰ)討論直線與圓的公共點(diǎn)個(gè)數(shù);

(Ⅱ)過(guò)極點(diǎn)作直線的垂線,垂足為,求點(diǎn)的軌跡與圓相交所得弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線的焦點(diǎn), 若點(diǎn),

1)求的值;

2)若直線經(jīng)過(guò)點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案