【題目】已知點(diǎn)是拋物線的焦點(diǎn), 若點(diǎn),

1)求的值;

2)若直線經(jīng)過點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線與直線的斜率之積為常數(shù).

【答案】(1;(2)證明見解析.

【解析】試題分析:(1)根據(jù)拋物線焦半徑公式及點(diǎn)上列方程組可求得的值;(2)設(shè) ,設(shè)直線的方程為,聯(lián)立方程,, ,根據(jù)韋達(dá)定理可得

試題解析:(1)由拋物線定義知,,解得,又點(diǎn), 代入,,解得

2)由(1)得,當(dāng)直線經(jīng)過點(diǎn)且垂直于軸時(shí), 此時(shí),

則直線的斜率,直線的斜率,所以.當(dāng)直線不垂直于軸時(shí), 設(shè),

則直線的斜率,同理直線的斜率,設(shè)直線的斜率為,且經(jīng)過,則 直線的方程為.聯(lián)立方程,, ,

所以,,

綜上, 直線與直線的斜率之積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知圓的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中, ),若傾斜角為且經(jīng)過坐標(biāo)原點(diǎn)的直線與圓相交于點(diǎn)點(diǎn)不是原點(diǎn)).

(1)求點(diǎn)的極坐標(biāo);

(2)設(shè)直線過線段的中點(diǎn),且直線交圓兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1,2), =(2,﹣2).
(1)設(shè) =4 + ,求 ;
(2)若 + 垂直,求λ的值;
(3)求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin cos ﹣2 sin2 +
(1)求函數(shù)f(x)的單調(diào)減區(qū)間
(2)已知α∈( , ),且f(α)= ,求f( )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn)及橢圓過點(diǎn)的動(dòng)直線與橢圓相交于, 兩點(diǎn).

1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且,點(diǎn)是棱的中點(diǎn),平面與棱交于點(diǎn).

)求證: .

)若,且平面平面,

求①二面角的銳二面角的余弦值.

②在線段上是否存在一點(diǎn),使得直線與平面所成角等于,若存在,確定的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,方程ax2-3x+2=0的解為1和b,

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)若數(shù)列{bn}滿足bnan·2n,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖. 圖中A點(diǎn)表示十月的平均最高氣溫約為,B點(diǎn)表示四月的平均最低氣溫約為. 下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.

)求圓的方程

)設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.

的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案