【題目】下列說法正確的是(

A.有兩個平面互相平行,其余各面都是平行四邊形的多面體是棱柱

B.四棱錐的四個側面都可以是直角三角形

C.有兩個面互相平行,其余各面都是梯形的多面體是棱臺

D.以三角形的一條邊所在直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫圓錐

【答案】B

【解析】

根據(jù)棱柱、棱錐、棱臺、圓錐的概念與性質判斷.

如下圖多面體滿足有兩個平面互相平行,其余各面都是平行四邊形,但它不是棱柱,A錯;

如下圖,四棱錐,是矩形,底面,則其四個側面都是直角三角形,B正確;

如下圖,有兩個面互相平行,其余各面都是梯形,但的延長線不交于同一點,它不是棱臺.C錯;

只有直角三角形以一條直角邊所在直線為軸旋轉一周,才能形成一個圓錐,即使是直角三角形,如果以斜邊所在直線為軸旋轉一周所形成的幾何體也不是圓錐,D錯.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)已知函數(shù)為常數(shù),

(1)若是函數(shù)的一個極值點,求的值;

(2)求證:當時,上是增函數(shù);

(3)若對任意的,總存在,使不等式成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,投資股票等風險型產(chǎn)品的年收益與投資額的算術平方根成正比.已知投資1萬元時兩類產(chǎn)品的年收益分別為0.125萬元和0.5萬元(如圖).

1)分別寫出兩種產(chǎn)品的年收益與投資額的函數(shù)關系式;

2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形的兩條對角線相交于點,邊所在直線的方程為.點邊所在直線上.求:

1邊所在直線的方程;

2邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,點中點,連接交于點,點中點.

1)求證:平面;

2)求證:平面平面

3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的對角線相交于點,將沿對角線折起,使得平面平面(如圖),則下列命題中正確的為  

A.直線直線,且直線直線

B.直線平面,且直線平面

C.平面平面,且平面平面

D.平面平面,且平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,為平行四邊形ABCD所在平面外一點,M,N分別為AB,PC的中點,平面PAD平面PBC=.

(1)求證:BC∥;

(2)MN與平面PAD是否平行?試證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點,右焦點分別為,右準線為,

(1)若直線上不存在點,使為等腰三角形,求橢圓離心率的取值范圍;

(2)在(1)的條件下,當取最大值時,點坐標為,設是橢圓上的三點,且,求:以線段的中心為原點,過兩點的圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,經(jīng)過點且斜率為的直線與橢圓有兩個不同的交點

(1)求的取值范圍;

(2)設橢圓與軸正半軸、軸正半軸的交點分別為,是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案