【題目】如圖所示,為平行四邊形ABCD所在平面外一點,M,N分別為AB,PC的中點,平面PAD平面PBC=.
(1)求證:BC∥;
(2)MN與平面PAD是否平行?試證明你的結(jié)論.
【答案】(1)見解析;(2)見解析
【解析】
試題證明線線平行的方法;1,向量法,2.垂直于同一平面的兩條直線平行,3平行于同一直線的兩條直線平行,4一個平面與另外兩個平行平面相交,那么兩條交線也平行。線面平行,1平面外的一條直線與平面內(nèi)的一條直線平行,則這條直線與這個平面平行,2若一條直線與一個平面同時平行于另一個平面且這條直線不屬于這個平面,則這條直線與這個平面平行,3若一條直線與兩平行平面中的一個平行,則這條直線與另一個平面平行,4,最好用的還是向量法。
試題解析:(1)證明 因為BC∥AD,AD平面PAD,
BC平面PAD,所以BC∥平面PAD.
又平面PAD∩平面PBC=l,BC平面PBC,所以BC∥l.
(2)解 MN∥平面PAD.證明如下:
如圖所示,取PD中點E,連結(jié)AE,EN.
又∵N為PC的中點,∴
又∵
∴
即四邊形AMNE為平行四邊形.
∴AE∥MN,又MN平面PAD,AE平面PAD
.∴MN∥平面PAD.
科目:高中數(shù)學 來源: 題型:
【題目】工廠需要圍建一個面積為512的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁.我們知道,砌起的新墻的總長度(單位: )是利用原有墻壁長度(單位: )的函數(shù).
(1)寫出關于的函數(shù)解析式,確定的取值范圍.
(2)堆料場的長、寬之比為多少時,需要砌起的新墻用的材料最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=e﹣x(lnx﹣2k)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直.
(1)求f(x)的單調(diào)區(qū)間;
(2)設 ,對任意x>0,證明:(x+1)g(x)<ex+ex﹣2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面為正方形的四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,PD=DC,點E是線段PC的中點.
(1)求異面直線AP與BE所成角的大;
(2)若點F在線段PB上,使得二面角F-DE-B的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為( )
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.
2014年 2015年 2016年
根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A. 年接待游客量逐年增加
B. 月接待游客量逐月增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱是AA′,CC′的中點,過直線EF的平面分別與棱BB′,DD′交于M,N,設BM=x,x∈[0,1],給出以下四種說法:
(1)平面MENF⊥平面BDD′B′;
(2)當且僅當x=時,四邊形MENF的面積最。
(3)四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
(4)四棱錐C′﹣MENF的體積V=h(x)為常函數(shù),以上說法中正確的為(。
A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com